福建省地热成藏模式II:流体循环模式与地热驱动力
孙厚云 , 马峰 , 王贵玲 , 朱喜 , 张薇 , 陈礼明
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3581 -3615.
福建省地热成藏模式II:流体循环模式与地热驱动力
Formation Mode of Geothermal Resources in Fujian Province II: Circulation Conceptual Model and Driving Force of Hydrothermal System
,
,
福建省地处华南陆缘高热流地热异常区,地热流体循环演化与成藏机制研究对区域地热资源科学利用具有重要意义.在系统梳理区域地热地质条件基础上,本文通过对地热流体的水化学和同位素分析,探讨了省域内不同类型地热系统的流体循环演化机制与地热驱动力差异,建立了分区地热成藏概念模型.结果表明,福建省水热型地热成因可分为闽西北隆起山地断裂深循环对流型、闽西南断陷盆地对流传导复合型、闽东‒闽西南断坳带断裂深循环对流型三种类型.区内地热资源成藏受控于区域构造与地壳热结构差异,政和‒大浦断裂以西武夷隆起带与闽东滨海陆缘带具有不同的热源机制,但水热通道形式相对统一.闽西武夷隆起带地热系统热源以幔源热为主,闽东火山坳陷带为“热壳冷幔”岩石圈热结构,壳内岩体放射性衰变生热对地热系统聚热贡献较高.区域张性‒张扭性NW向断裂构成地热系统的导水通道,压性为主的NE向断裂则构成热聚敛的阻水‒导热通道.由水热系统流体温度和盐度变化导致的闽西北、闽西南和闽东火山断坳带与滨海地区地热驱动力的标准水头分别为+218.75 m、+202.24~+250.60 m、+261.72 m和+308.32 m.闽西永梅坳陷带、闽东NW与NE向深大断裂交汇处、断陷盆地‒断陷海湾深入大陆段、福州与漳州等断陷盆地基底隆起带、永泰‒德化‒仙游等环状火山构造带与NE向深大断裂交汇处地热热储温度超过150 ℃,为福建省域内中高温地热资源成藏潜力区.
Fujian Province is one of the most important geothermal anomaly areas in the southern margin of China. It is of great significance for the scientific utilization of geothermal resources to reveal the formation mechanisms of geothermal system in the area. The circulation and evolutionary characteristics of geothermal fluid were clarified, and the conceptual formation mode and driving force of hydrothermal system were established in each hydrogeochemical zone based on the implications of hydrochemical and isotopic characteristics of geothermal water samples, GIS spatial analysis, and the overview of regional geothermal geological and crustal thermal structure conditions. The results show that the geothermal system in Fujian Province can be divided into deep circulation convection type of uplifted mountain faults in northwestern region, complex convection conduction hydrothermal type of fault basin in southeastern region, and deep circulation convection type of fault depression zone in eastern and southeastern region. The endowment of geothermal resources in Fujian is controlled by regional tectonics and crustal thermal structure that the geothermal systems of Wuyi uplift zone in western Zhenghe-Dapu fault and the coastal margin zone in eastern Fujian obtained different crust and mantle heat source compositions, but relatively uniform hydrothermal transmission channels. The heat accumulation of the geothermal system in the Wuyi uplift zone is mainly derived by mantle conduction, while the lithospheric thermal structure of eastern volcanic depression zone is the “hot crust-cold mantle” type in which radioactive element decay of intrusive-volcanic rock mass contributed a relatively high amount of crustal heat accumulation. The regional tensile torsional NW faults turned out to be the water conducting channels of geothermal systems, while compression-dominated NE-trending faults were the water-blocking and heat-conducting channels for heat accumulation. The standard head of total geothermal driving force generated by temperature rise and salinity increase in hydrothermal system of northwestern, southwestern, eastern volcanic depression zone and coastal margin region was +218.75 m, +202.24~+250.60 m, +261.72 m and +308.32 m respectively. The Yongmei depression zone in western Fujian, and intersection zones of regional NW and NE deep faults, namely the hydraulic fracture of the faulted basin and the sunken bay extend deep into the mainland, the basement uplift zone of fault basins such as Fuzhou and Zhangzhou basins, intersection zones of regional NE deep faults and ring-shaped volcanic apparatus in eastern Fujian were the optimal target areas for exploitation of medium-high temperature geothermal resources in bulk.
地热水 / 地下水循环 / 地热驱动力 / 成因模式 / 福建省 / 水化学 / 同位素.
geothermal water / groundwater circulation / geothermal driving force / formation mode / Fujian Province / hydrochemistry / isotopes
| [1] |
Bath, A. H., Williamson, K. H., 1983. Isotopic and Chemical Evidence for Water Sources and Mixing in the Cerro Pando Geothermal Area, Republic of Panama. Geothermics, 12(2-3): 177-184. https://doi.org/10.1016/0375⁃6505(83)90028⁃7 |
| [2] |
Batzle, M., Wang, Z. J., 1992. Seismic Properties of Pore Fluids. Geophysics, 57(11): 1396-1408. https://doi.org/10.1190/1.1443207 |
| [3] |
Chen, G. N., Grapes, R., 2007. Granite Genesis: In Situ Melting and Crustal Evolution. Springer, Dordrecht. https://doi.org/10.1007/978⁃1⁃4020⁃5891⁃2 |
| [4] |
Chen, J. C., Chen, J., Zhang, X. C. J., et al., 2024. Stable Hydrogen Isoscape in Precipitation Generated Using Data Fusion for East China. Science in China (Series D), 54(9): 3023-3039 (in Chinese with English abstract). |
| [5] |
Chen, L. M., 2019. Isotopic Characteristic Analysis of Hydrogen⁃Oxygen Environment in Geothermal Water in Fujian Province. Geology of Fujian, 38(1): 61-68 (in Chinese with English abstract). |
| [6] |
Chen, T. D., 2018. Petroleum Geology Condition Analysis and Exploration Targets in Fujian, Zhejiang and Jiangxi Area (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract). |
| [7] |
Chen, Y. T., Wang, Z. P., Huang, Q. T., et al., 1998. Downfaulted Basin, Plain, Bay and Earthquakes of Coastland in Fujian Province. Journal of Geodesy and Geodynamics, 18(4): 55-61 (in Chinese with English abstract). |
| [8] |
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 |
| [9] |
Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153⁃3490.1964.tb00181.x |
| [10] |
Dong, S. W., Li, J. H., Cawood, P. A., et al., 2020. Mantle Influx Compensates Crustal Thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE Reflection Profiling. Earth and Planetary Science Letters, 544: 116360. https://doi.org/10.1016/j.epsl.2020.116360 |
| [11] |
Faure, M., Chen, Y., Feng, Z. H., et al., 2017. Tectonics and Geodynamics of South China: An Introductory Note. Journal of Asian Earth Sciences, 141: 1-6. https://doi.org/10.1016/j.jseaes.2016.11.031 |
| [12] |
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375⁃6505(77)90007⁃4 |
| [13] |
Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na⁃K⁃Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016⁃7037(73)90060⁃4 |
| [14] |
Gan, H. N., 2023. Thermo⁃Rheological Structure of the Lithosphere and Geodynamic Evolution of the Coastal Fujian and Adjacent Region, China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). |
| [15] |
Gan, H. N., Wang, G. L., Wang, X., et al., 2019. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids, 2019: 3925462. https://doi.org/10.1155/2019/3925462 |
| [16] |
Gan, Q. L., 2023. Preliminary Exploration of Geological Characteristics and Metallogenic Regularity of Feiluan Geothermal Resources in Ningde City, Fujian Province. Geology of Fujian, 42(1): 48-55 (in Chinese with English abstract). |
| [17] |
Ghomshei, M. M., Clark, I. D., 1993. Oxygen and Hydrogen Isotopes in Deep Thermal Waters from the South Meager Creek Geothermal Area, British Columbia, Canada. Geothermics, 22(2): 79-89. https://doi.org/10.1016/0375⁃6505(93)90048⁃R |
| [18] |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na⁃K⁃Mg⁃Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016⁃7037(88)90143⁃3 |
| [19] |
Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012⁃821X(92)90127⁃H |
| [20] |
Guo, F., Wu, Y. M., Zhang, B., et al., 2021. Magmatic Responses to Cretaceous Subduction and Tearing of the Paleo⁃Pacific Plate in SE China: An Overview. Earth⁃Science Reviews, 212: 103448. https://doi.org/10.1016/j.earscirev.2020.103448 |
| [21] |
Hochstein, M. P., Yang, Z. K., Ehara, S., 1990. The Fuzhou Geothermal System (People’s Republic of China): Modelling Study of a Low Temperature Fracture⁃Zone System. Geothermics, 19(1): 43-60. https://doi.org/10.1016/0375⁃6505(90)90065⁃J |
| [22] |
Hu, S. B., Wang, J. Y., 2000. Heat Flow, Deep Temperature and Thermal Structure across the Orogenic Belts in Southeast China. Journal of Geodynamics, 30(4): 461-473. https://doi.org/10.1016/S0264⁃3707(00)00010⁃7 |
| [23] |
Huang, C. Q., Lin, F. J., Ye, B. F., 2018. The Characteristics of Radioactive Heat Production Rate and Assessment of Hot Dry Rock in High⁃Value Areas of Heat Flow, Fujian Province. Geology of Fujian, 37(3): 227-237 (in Chinese with English abstract). |
| [24] |
Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3-4): 203-227. https://doi.org/10.1016/0377⁃0273(86)90014⁃4 |
| [25] |
Huang, R., Xu, Y. X., Zhu, L. P., et al., 2015. Detailed Moho Geometry beneath Southeastern China and Its Implications on Thinning of Continental Crust. Journal of Asian Earth Sciences, 112: 42-48. https://doi.org/10.1016/j.jseaes.2015.09.002 |
| [26] |
Institute of Geophysics, Chinese Academy of Sciences, 1992. Geothermal Geophysical Research in Fujian Province. China Science and Technology Press, Beijing (in Chinese). |
| [27] |
Jia, W. H., Liu, K., Yan, J. K., et al., 2024. Characteristics of Geothermal Waters in Eastern Wugongshan Based on Hydrogen, Oxygen, and Strontium Isotopes. Applied Geochemistry, 161: 105874. https://doi.org/10.1016/j.apgeochem.2023.105874 |
| [28] |
Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). |
| [29] |
Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics,753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 |
| [30] |
Kang, F. X., Sui, H. B., Zheng, T. T., et al., 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A Study of Baotu Spring. Earth Science, 49(8): 2862-2878 (in Chinese with English abstract). |
| [31] |
Kell, G. S., 1977. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water. Journal of Physical and Chemical Reference Data, 6(4): 1109-1131. https://doi.org/10.1063/1.555561 |
| [32] |
Li, C. L., 2019. Geological and Geochemical Characteristics of Tangyang Geothermal Anomalies Area in Zhangzhou, Fujian Province (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). |
| [33] |
Li, J. X., Sagoe, G., Yang, G., et al., 2018a. Evaluation of Mineral⁃Aqueous Chemical Equilibria of Felsic Reservoirs with Low⁃Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. Journal of Volcanology and Geothermal Research, 352: 92-105. https://doi.org/10.1016/j.jvolgeores.2018.01.008 |
| [34] |
Li, K. F., Zhu, C. Q., 2023. Heat Generation Rate of Granite in the Cathaysia Block and Its Influence on Geothermal Fields, SouthEast China. Petroleum Science Bulletin, 8(3): 259-289 (in Chinese with English abstract). |
| [35] |
Li, Q. L., 2021. Geothermal Characteristics and Prospect Analysis of Longmen Canyon in Dehua County, Fujian Province. Geology of Fujian, 40(4): 305-313 (in Chinese with English abstract). |
| [36] |
Li, R., Chen, Q. C., Zhang, C. Y., et al., 2016. In Situ Stress Characteristics in the Western Coast of Taiwan Strait. Acta Geologica Sinica, 90(8): 1703-1714 (in Chinese with English abstract). |
| [37] |
Li, S., Han, J. T., Liu, L. J., et al., 2022. The Deep Electrical Structure and Thermal Characteristics of the Zhangshu⁃Ningde Magnetotelluric Profile in South China. Chinese Journal of Geophysics, 65(4): 1354-1375 (in Chinese with English abstract). |
| [38] |
Li, Z., Wang, X. C., Wilde, S. A., et al., 2018b. Role of Deep⁃Earth Water Cycling in the Growth and Evolution of Continental Crust: Constraints from Cretaceous Magmatism in SouthEast China. Lithos, 302: 126-141. https://doi.org/10.1016/j.lithos.2017.12.028 |
| [39] |
Liang, C. H., Xu, X. S., He, Z. Y., 2022. Connected Volcanic and Plutonic Association by Crystal⁃Melt Segregation in the Daiyunshan Volcanic Field, SE China. Tectonophysics, 836: 229409. https://doi.org/10.1016/j.tecto.2022.229409 |
| [40] |
Liao, Z. J., 2012. Deep⁃Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98 (in Chinese with English abstract). |
| [41] |
Lin, L. F., Sun, Z. X., Wang, A. D., et al., 2017. Radioactive Geochemical Characteristics of Mesozoic Granites from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488-500 (in Chinese with English abstract). |
| [42] |
Lin, W. J., Chen, X. Y., Gan, H. N., et al., 2020. Geothermal, Geological Characteristics and Exploration Direction of Hot Dry Rocks in the Xiamen Bay⁃Zhangzhou Basin, Southeastern China. Acta Geologica Sinica, 94(7): 2066-2077 (in Chinese with English abstract). |
| [43] |
Lin, W. J., Wang, G. L., Gan, H. N., et al., 2023. Heat Source Model for Enhanced Geothermal Systems (EGS) under Different Geological Conditions in China. Gondwana Research, 122: 243-259. https://doi.org/10.1016/j.gr.2022.08.007 |
| [44] |
Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract). |
| [45] |
Lin, W. J., Yin, X. X., 2022. Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water, 14(20): 3205. https://doi.org/10.3390/w14203205 |
| [46] |
Liu, C. L., Li, Y. S., Cao, S. W., et al., 2022. Effects of Seawater Recharge on the Formation of Geothermal Resources in Coastal Areas and Their Mechanisms: A Case Study of Xiamen City, Fujian Province, China. Frontiers in Earth Science, 10: 872620. https://doi.org/10.3389/feart.2022.872620 |
| [47] |
Liu, C. L., Zhang, Y. J., Li, Y. S., 2025. Distribution Characteristics and Genesis of Seawater⁃Replenished Geothermal Systems on the Western Coast of the Taiwan Strait. Geothermics, 131:103368. https://doi.org/10.1016/j.geothermics.2025.103368 |
| [48] |
Liu, J. R., Song, X. F., Yuan, G. F., et al., 2009. Characteristics of δ18O in Precipitation over Eastern Monsoon China and the Water Vapor Sources. Chinese Science Bulletin, 54(22): 3521-3531 (in Chinese). |
| [49] |
Liu, K. K., Yui, T. F., Shieh, Y. N., et al., 1990. Hydrogen and Oxygen Isotopic Compositions of Meteoric and Thermal Waters from the Chingshui Geothermal Area, Northern Taiwan. Proceedings of the Geological Society of China, 33(2): 143-165. |
| [50] |
Lu, G. P., Wang, X., Li, F. S., et al., 2017. Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal Xinzhou Geothermal Field, Guangdong, China. Physics of the Earth and Planetary Interiors, 264: 76-88. https://doi.org/10.1016/j.pepi.2016.12.004 |
| [51] |
Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun⁃Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 |
| [52] |
Lyu, H. J., Yang, Z. H., Chen, H. Q., 1989. The “Earthquake Window” and Its Mechanism at Zhangzhou⁃Huaan, Fujian Province. Seismology and Geology, 11(2): 33-38 (in Chinese with English abstract). |
| [53] |
Ma, F., Wang, G. L., Sun, H. L., et al., 2022. Indication of Hydrogen and Oxygen Stable Isotopes on the Characteristics and Circulation Patterns of Medium⁃Low Temperature Geothermal Resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86. https://doi.org/10.19637/j.cnki.2305⁃7068.2022.01.007 |
| [54] |
Mao, X. M., Ye, J. Q., Dong, Y. Q., et al., 2022. Geothermal Driving Force: A New Additional Non⁃Gravity Action Driving the Migration of Geothermal Water in the Xinzhou Geothermal Field of Yangjiang, Guangdong. Bulletin of Geological Science and Technology, 41(1): 137-145 (in Chinese with English abstract). |
| [55] |
Pang, Z. H., 1987. Zhangzhou Basin Geothermal System⁃Genesis Model, Energy Potential and the Occurrence of Thermal Water (Dissertation). Institute of Geology and Geophysics, CAS, Beijing (in Chinese with English abstract). |
| [56] |
Pang, Z. H., Fan, Z. C., Wang, J. Y., 1990. Isotope Evidence for Geothermal Water Genesis and Seawater Involvement in Zhangzhou Basin, Southeast China. Geochimica, 19(4): 296-302 (in Chinese with English abstract). |
| [57] |
Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135 |
| [58] |
Phillips, S. L., Igbene, A., Fair, J. A., et al., 1981. A Technical Databook for Geothermal Energy Utilization. Lawrence Berkeley National Laboratory, Berkeley. |
| [59] |
Qi, S. H., 2021.Geothermal Geochemical Exploration. Science Press, Beijing (in Chinese). |
| [60] |
Rybach, L., Muffler, L. J. P., 1987. Geothermal Systems Principles and Case Histories. Translated by Geothermal Research of Department of Geology, Peking University. Geological Publishing House,Beijing. |
| [61] |
Saar, M. O., 2011. Review: Geothermal Heat as a Tracer of Large⁃Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeology Journal, 19(1): 31-52. https://doi.org/10.1007/s10040⁃010⁃0657⁃2 |
| [62] |
Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Source Analysis of Sodium of Low⁃Salinity High⁃Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287 (in Chinese with English abstract). |
| [63] |
Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth⁃Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 |
| [64] |
Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water⁃Rock Interaction and Age of Low⁃Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380 |
| [65] |
Sun, H. Y., 2023. Mechanism of Strontium Enrichment in Sallow Groundwater Driven by the Coupling of Rock Weathering and Water⁃Rock Interaction in Central Chengde (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [66] |
Sun, H. Y., Ma, F., Wang, G. L.,et al., 2025a. Spatial Variation Characteristics and Source Apportionment of Geothermal Hydrochemical Components with Therapeutic Benefits in Fujian Province Based on Machine Learning. Acta Geologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.19762/j.cnki.dizhixuebao.2024440 |
| [67] |
Sun, H. Y., Ma, F., Zhu, X., et al., 2025b. Hydrogeochemical Evolution of Geothermal Fluids and Its Indications in the Yanshan Uplift⁃North China Fault Basin, Northern Hebei. Acta Geologica Sinica, 99(5): 1711-1742 (in Chinese with English abstract). |
| [68] |
Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583⁃022⁃1635⁃z |
| [69] |
Temizel, E. H., Gültekin, F., Ersoy, A. F., et al., 2021. Multi⁃Isotopic (O, H, C, S, Sr, B, Li) Characterization of Waters in a Low⁃Enthalpy Geothermal System in Havza (Samsun), Turkey. Geothermics, 97: 102240. https://doi.org/10.1016/j.geothermics.2021.102240 |
| [70] |
Teng, J. W., Si, X., Zhuang, Q. X., et al., 2017. Abnormal Structure of Crust and Mantle and Analysis of Deep Thermal Potential in Fujian Continental Margin. Science Technology and Engineering, 17(17): 6-38 (in Chinese with English abstract). |
| [71] |
Tian, J., Stefánsson, A., Li, Y. M., et al., 2023. Geochemistry of Thermal Fluids and the Genesis of Granite⁃Hosted Huangshadong Geothermal System, SouthEast China. Geothermics, 109: 102647. https://doi.org/10.1016/j.geothermics.2023.102647 |
| [72] |
Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176 |
| [73] |
Wagner, W., Kretzschmar, H. J., 2008. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Second Edition). Springer⁃Verlag, Berlin. |
| [74] |
Wan, T. F., Chu, M. J., Chen, M. Y., 1988. Thermal Regimes of the Lithosphere and Geothermal Resources Potential in Fujian Province. Acta Geological Sinica, 62(2): 178-189 (in Chinese with English abstract). |
| [75] |
Wang, G.L., Lin, W.J., Liu, F., et al., 2023. Theory and Survey Practice of Deep Heat Accumulation in Geothermal System and Exploration Practice. Acta Geologica Sinica, 97(3): 639-660 (in Chinese with English abstract). |
| [76] |
Wang, G. L., Lin, W. J., 2020. Main Hydro⁃Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract). |
| [77] |
Wang, J., Chen, G. N., Grapes, R., et al., 2011. The Relationship between Evolution of the Intracrustal Magma Layer and Development of Basins: An Example from the Mesozoic Basins in SouthEast China. Earth Science Frontiers, 18(1): 24-31 (in Chinese with English abstract). |
| [78] |
Wang, K., Xiong, X., 2012. Refining Thermal Structure of the Lithosphere in Eastern Section of Heishui⁃Quanzhou Geotransect with Geodetic Observations. Progress in Geophysics, 27(4): 1366-1376 (in Chinese with English abstract). |
| [79] |
Wang, S. J., Zhang, M., Huang, X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004 (in Chinese with English abstract). |
| [80] |
Wang, X., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018(1): 8715080. https://doi.org/10.1155/2018/8715080 |
| [81] |
Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [82] |
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 |
| [83] |
Wei, S. Y., Liu, S. C., Ao, G. H., et al., 1988. The Geothermal Activity and the Characteristics of Geophysics Field in Continental Margin of Fujian Province. Northwestern Seismological Journal, 10(3): 74-81 (in Chinese with English abstract). |
| [84] |
Wu, C. F., Xu, D., Yang, S. J., et al., 2025. Deep Thermal State on the Southern Margin of the Zhangzhou Basin Based on the Electrical Conductivity Model. Geothermics, 125: 103188. https://doi.org/10.1016/j.geothermics.2024.103188 |
| [85] |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2023. Crustal Thermo⁃Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 34(1): 194-204. https://doi.org/10.1007/s12583⁃021⁃1486⁃z |
| [86] |
Xie, Y. N., Cheng, F. P., He, R. Y., et al., 1986. Hydrogen and Oxygen Isotopes of Precipitation and Geothermal Water in Taiwan Province. Geology⁃Geochemistry, 14(3): 42-46 (in Chinese). |
| [87] |
Xiong, S. B., Liu, H. B., Wang, Y. X., 2002. A Study on Velocity Distribution in Upper Crust and Tectonics of Basement and Cover in South China. Chinese Journal of Geophysics,45(6):784-791,902-904 (in Chinese with English abstract). |
| [88] |
Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract). |
| [89] |
Xu, Q. J., Liu, S. F., Wang, Z. F., et al., 2019. Provenance of the East Guangdong Basin and Yong’an Basin in SouthEast China: Response to the Mesozoic Tectonic Regime Transformation. Journal of Asian Earth Sciences, 185: 104024. https://doi.org/10.1016/j.jseaes.2019.104024 |
| [90] |
Xu, X. S., Wang, X. Y., Ma, Z. W., et al., 2024. Petrogenesis of Episodic Volcanic⁃Intrusive Rocks in SE China: Crystal⁃Melt Segregation and Magma Mixing. Chemical Geology, 670: 122457. https://doi.org/10.1016/j.chemgeo.2024.122457 |
| [91] |
Xu, X. S., Zhao, K., He, Z. Y., et al., 2021. Cretaceous Volcanic⁃Plutonic Magmatism in SE China and a Genetic Model. Lithos, 402: 105728. https://doi.org/10.1016/j.lithos.2020.105728 |
| [92] |
Ye, J. Q., Mao, X. M., 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783 (in Chinese with English abstract). |
| [93] |
Yu, M. G., Hong, W. T., Yang, Z. L., et al., 2021. Classification of Yanshanian Volcanic Cycle and the Related Mineralization in the Coast Area of Southeastern China. Geological Bulletin of China, 40(6): 845-863 (in Chinese with English abstract). |
| [94] |
Yuan, H. W., Jing, T. Y., Yin, Y. L., et al., 2024. Geothermal Model and Development Area of a Fault⁃Controlled Geothermal Zone along the Fujian Coastal Area of Southeastern China. Natural Gas Industry B, 11(1): 28-41. https://doi.org/10.1016/j.ngib.2024.01.005 |
| [95] |
Zhang, C. R., Zhang, G. B., Jiang, G. M., et al., 2021. Seismic Pumping for Mineralization in Southern Fujian, Cathaysia Block: New Insights from a Teleseismic Full Waveform Inversion. Ore Geology Reviews, 131: 104036. https://doi.org/10.1016/j.oregeorev.2021.104036 |
| [96] |
Zhang, C. Y., Li, B., Li, H. L., et al., 2023. Stress Estimation in a 3 km⁃Deep Geothermal Borehole: A Snapshot of Stress State in Southern Cathaysia Block, China. Tectonophysics, 864: 230031. https://doi.org/10.1016/j.tecto.2023.230031 |
| [97] |
Zhang, J., He, Y. B., Fan, Y. X., 2024. Geophysical Analysis of Heat Source Composition in the Fujian Coastal Geothermal Anomaly Area. Earth Science Frontiers, 31(3): 392-401 (in Chinese with English abstract). |
| [98] |
Zhang, J., Wang, B. Y., Tang, X. C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin. Chinese Journal of Geophysics, 61(10): 3917-3932 (in Chinese with English abstract). |
| [99] |
Zhang, K., Ma, H. M., Cai, J. B., 2002. Discussion on the Origins of Hot Spring along the Coast of South China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 41(1): 82-86 (in Chinese with English abstract). |
| [100] |
Zhao, F. Y., Suo, Y. H., Liu, L. J., et al., 2023. Fine Lithospheric Structure Controlling Meso⁃Cenozoic Tectono⁃Magmatism in the South China Block: Inference from a Multidisciplinary Analysis. Earth⁃Science Reviews, 244: 104524. https://doi.org/10.1016/j.earscirev.2023.104524 |
| [101] |
Zhao, L. L., 2011. Analysis on Gui’an Geothermal Resource Potential in Lianjiang County of Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [102] |
Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3): 292-305 (in Chinese with English abstract). |
| [103] |
Zhao, Y. H., Yang, J. Y., Wang, H., et al., 2017. Hydrogen and Oxygen Isotope Distribution Characteristics of Geothermal Water. Progress in Geophysics, 32(6): 2415-2423 (in Chinese with English abstract). |
| [104] |
Zheng, H. R., Luo, J., 2024. Progress in Research on the Exploration and Evaluation of Deep Geothermal Resources in the Fujian⁃Guangdong⁃Hainan Region, China. Energy Geoscience, 5(2): 100232. https://doi.org/10.1016/j.engeos.2023.100232 |
| [105] |
Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020a. Seismic Imaging of a Mid⁃Crustal Low⁃Velocity Layer beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573 |
| [106] |
Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/S0040⁃1951(00)00120⁃7 |
| [107] |
Zhou, X., Song, C., Li, T., 2016. Estimation of the Inland Extending Length of the Freshwater⁃Saltwater Interface in Coastal Unconfined Aquifers. Hydrological Sciences Journal, 61(13): 2367-2375. https://doi.org/10.1080/02626667.2015.1111516 |
| [108] |
Zhou, X., Zhuo, L. Y., Wu, Y. Q., et al., 2023. Origin of Some Hot Springs as Conceptual Geothermal Models. Journal of Hydrology, 624: 129927. https://doi.org/10.1016/j.jhydrol.2023.129927 |
| [109] |
Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020b. Late Mesozoic High⁃Heat⁃Producing (HHP) and High⁃Temperature Geothermal Reservoir Granitoids: The Most Significant Geothermal Mechanism in South China. Lithos, 366: 105568. https://doi.org/10.1016/j.lithos.2020.105568 |
| [110] |
Zhuang, Q. X., Li, D. W., Zheng, S. G., et al., 2019. Study on Geothermal Resources and Geological Response of Deep High Temperature Rock Mass in Zhangzhou Basin and Its Adjacent Areas. Geological Publishing House, Beijing (in Chinese). |
| [111] |
Zu, F. P., 2012. Evolution Features of Sedimentary and Structural Environment of Representative Basins since Late Palaeozoic in Southeast China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). |
厦门市自然科学基金项目(3502Z202471066)
中国地质科学院基本科研业务费项目(SK202328)
中国地质调查局项目(DD202305010)
中国地质调查局项目(DD20230019)
中国地质科学院青年英才项目(YK202305)
/
| 〈 |
|
〉 |