粤西沿海高盐度中低温地热系统水化学特征及形成演化
雷云开 , 王帅 , 黄学莲 , 林景昱 , 韩永杰 , 程子豪 , 祁士华
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3616 -3630.
粤西沿海高盐度中低温地热系统水化学特征及形成演化
Hydrochemical Characteristics and Formation⁃Evolution Analysis of Medium⁃Low Temperature Geothermal Systems with High Salinity in Coastal Western Guangdong
,
沿海地区地热系统易受到海水入侵,导致地热水的盐度升高,降低利用效率,增加利用成本.广东省作为我国重要的中低温地热资源分布区,其沿海地带地热系统的海水入侵情况及其影响作用等仍缺乏系统研究.基于粤西地区35个地热水、1个地下冷水和1个海水的理化数据,综合水化学、同位素及多种图解分析,探讨其水化学特征、海水入侵情况及形成演化.研究结果表明沿海地区地热水明显受到海水入侵影响,具有高盐度的特点,最高混合比例达到41.88%,从内陆到沿海地区,地热水的水化学类型由重碳酸盐型转变为氯化物型.地热水主要补给来源是大气降水,在晚更新世至全新世时期,云开山脉与天露山脉地区的大气降水下渗,与90~126 ℃的热储围岩接触而逐渐升温;而后海进运动使得地热水受到大规模古海水混入,热对流的“抽吸效应”还会加速海水运移,临海地区持续受到海水侵入,最终形成高盐度中低温地热水.
Coastal geothermal systems are prone to seawater intrusion, which can increase the salinity of geothermal water, reduce its utilization efficiency, and raise operational costs. As a significant region for medium-low temperature geothermal resources in China, the coastal areas of Guangdong Province still lack systematic research on seawater intrusion into geothermal systems and its impacts. This study investigates the hydrochemical characteristics, seawater intrusion extent and formation mechanisms based on physicochemical data from 35 geothermal water samples, one cold groundwater sample and one seawater sample in western Guangdong Province. Comprehensive analyses including hydrochemistry, isotopes and multivariate graphical interpretation methods, are employed to explore these aspects. The research results indicate that coastal geothermal water exhibits visible seawater intrusion characteristics with high salinity levels, demonstrating a maximum mixing proportion reaching 41.88%. The hydrochemical types evolve from bicarbonate-type in inland areas to chloride-type in coastal zones. The geothermal water is primarily recharged by atmospheric precipitation. During the Late Pleistocene to Holocene period, infiltrated meteoric water from the Yunkai Mountain and Tianlu Mountain areas interacted with geothermal reservoir rocks at a temperature of 90-126 ℃, undergoing gradual temperature elevation. Subsequently, marine transgression events induced large-scale paleo-seawater mixing into the geothermal system, where seawater migration was accelerated by thermal convection “pumping effects”. Thereafter, sustained seawater intrusion has persistently affected coastal areas, ultimately forming medium-low temperature geothermal water with high salinity characteristics.
中低温地热水 / 水化学 / 海水入侵 / 高盐度 / 地热能 / 同位素.
medium⁃low temperature geothermal water / hydrochemistry / seawater intrusion / high salinity / geothermal energy / isotopes
附表见https://doi.org/10.3799/dqkx.2025.108.
| [1] |
Arnórsson, S., 1983. Chemical Equilibria in Icelandic Geothermal Systems—Implications for Chemical Geothermometry Investigations. Geothermics, 12(2-3): 119-128. https://doi.org/10.1016/0375⁃6505(83)90022⁃6 |
| [2] |
Chen, H., Zeng, T.R., Zhu, J.L., et al., 2022. Geochemical Characteristics and Genetic Analysis of Geothermal Fluid in Different Lithologic Areas in Shaoguan Area, Northern Guangdong Province. Mineralogy and Petrology, 42(2): 125-135 (in Chinese with English abstract). |
| [3] |
Feng, J. Y., 2023. Factors Controlling the Distribution of Granite Reservoirs of Hydrothermal System Type in South China: A Case Study of Huangshadong Geothermal Field in Yuezhong Depression, China. Energy Geoscience, 4(4): 100160. https://doi.org/10.1016/j.engeos.2023.100160 |
| [4] |
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375⁃6505(77)90007⁃4 |
| [5] |
Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na⁃K⁃Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016⁃7037(73)90060⁃4 |
| [6] |
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088 |
| [7] |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na⁃K⁃Mg⁃Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016⁃7037(88)90143⁃3 |
| [8] |
Giménez⁃Forcada, E., 2014. Space/Time Development of Seawater Intrusion: A Study Case in Vinaroz Coastal Plain (Eastern Spain) Using HFE⁃Diagram, and Spatial Distribution of Hydrochemical Facies. Journal of Hydrology, 517: 617-627. https://doi.org/10.1016/j.jhydrol.2014.05.056 |
| [9] |
Jiang, W. J., Sheng, Y. Z., Wang, G. C., et al., 2022. Cl, Br, B, Li, and Noble Gases Isotopes to Study the Origin and Evolution of Deep Groundwater in Sedimentary Basins: A Review. Environmental Chemistry Letters, 20(2): 1497-1528. https://doi.org/10.1007/s10311⁃021⁃01371⁃z |
| [10] |
Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong’an New Area. Earth Science, 48(3): 958-972 (in Chinese with English abstract). |
| [11] |
Krishna, B., Achari, V. S., 2024. Groundwater for Drinking and Industrial Purposes: a Study of Water Stability and Human Health Risk Assessment from Black Sand Mineral Rich Coastal Region of Kerala, India. Journal of Environmental Management, 351: 119783. https://doi.org/10.1016/j.jenvman.2023.119783 |
| [12] |
Kuang, J., Qi, S. H., Hu, X. Y., 2021. New Insights into Crust and Upper Mantle Structure in Guangdong Province, China and Its Geothermal Implications. Energies, 14(8): 2236. https://doi.org/10.3390/en14082236 |
| [13] |
Li, J. X., Sagoe, G., Li, Y. L., 2020. Applicability and Limitations of Potassium⁃Related Classical Geothermometers for Crystalline Basement Reservoirs. Geothermics, 84: 101728. https://doi.org/10.1016/j.geothermics.2019.101728 |
| [14] |
Li, J. X., Xu, Y. D., Lin, W. J., 2024. The Applicability of Traditional Chemical Geothermometers. Earth Science Frontiers, 31(6): 145-157 (in Chinese with English abstract). |
| [15] |
Li, X., Ye, S. Y., 2016. Progress in Seawater Intrusion. Marine Geology & Quaternary Geology, 36(6): 211-217 (in Chinese with English abstract). |
| [16] |
Li, Y. M., Tian, J., Cheng, Y. Z., et al., 2021. Existence of High Temperature Geothermal Resources in the Igneous Rock Regions of South China. Frontiers in Earth Science, 9: 728162. https://doi.org/10.3389/feart.2021.728162 |
| [17] |
Li, Y. N., Bai, X. M., Huang, C. S., et al., 2024. Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H⁃O⁃C Isotopic Implications. Water, 16(13): 1765. https://doi.org/10.3390/w16131765 |
| [18] |
Li, Z. W., Zhang, X. Y., Zhang, M. Z., et al., 2020. Comparison of Indicators for the Assessment of Saltwater Intrusion in Coastal Aquifers: Taking Aquifers in Pearl River Estuary as an Example. Marine Environmental Science, 39(1): 16-24 (in Chinese with English abstract). |
| [19] |
Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun⁃Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 |
| [20] |
Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High⁃Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889 |
| [21] |
Möller, D., 1990. The Na/Cl Ratio in Rainwater and the Seasalt Chloride Cycle. Tellus B, 42(3): 254-262. https://doi.org/10.1034/j.1600⁃0889.1990.t01⁃1⁃00004.x |
| [22] |
Nath, B., Jean, J. S., Lee, M. K., et al., 2008. Geochemistry of High Arsenic Groundwater in Chia⁃Nan Plain, Southwestern Taiwan: Possible Sources and Reactive Transport of Arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96. https://doi.org/10.1016/j.jconhyd.2008.04.005 |
| [23] |
Ndikubwimana, I., Mao, X. M., Zhu, D. B., et al., 2020. Geothermal Evolution of Deep Parent Fluid in Western Guangdong, China: Evidence from Water Chemistry, Stable Isotopes and Geothermometry. Hydrogeology Journal, 28(8): 2947-2961. https://doi.org/10.1007/s10040⁃020⁃02222⁃x |
| [24] |
Nitschke, F., Held, S., Neumann, T., et al., 2018. Geochemical Characterization of the Villarrica Geothermal System, Southern Chile, Part II: Site⁃Specific Re⁃Evaluation of SiO2 and Na⁃K Solute Geothermometers. Geothermics, 74: 217-225. https://doi.org/10.1016/j.geothermics.2018.03.006 |
| [25] |
Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24 (in Chinese with English abstract). |
| [26] |
Reed, M., Spycher, N., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution. Geochimica et Cosmochimica Acta, 48(7): 1479-1492. https://doi.org/10.1016/0016⁃7037(84)90404⁃6 |
| [27] |
Truesdell, A. H., Fournier, R. O., 1977. Procedure for Estimating the Temperature of a Hot⁃Water Component in a Mixed Water by Using a Plot of Dissolved Silica Versus Enthalpy. Journal of Research of the US Geological Survey, 5(1): 49-52. |
| [28] |
Vengosh, A., Rosenthal, E., 1994. Saline Groundwater in Israel: Its Bearing on the Water Crisis in the Country. Journal of Hydrology, 156(1-4): 389-430. https://doi.org/10.1016/0022⁃1694(94)90087⁃6 |
| [29] |
Wang, S. J., Zhang, M., Huang, X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004 (in Chinese with English abstract). |
| [30] |
Wang, S., Kuang, J., Huang, X. L., et al., 2022. Upwelling of Mantle⁃Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica⁃English Edition, 96(1): 100-110. https://doi.org/10.1111/1755⁃6724.14686 |
| [31] |
Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristicsof the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences (Wuhan), Wuhan (in Chinese with English abstract) |
| [32] |
Wang, Y. B., Liu, S. W., Chen, C. Q., et al., 2024. Compilation of Terrestrial Heat Flow Data in Continental China (5th Edition). Chinese Journal of Geophysics, 67(11): 4233-4265 (in Chinese with English abstract). |
| [33] |
Wang, Y. C., Gu, H. Y., Li, D., et al., 2021. Hydrochemical Characteristics and Genesis Analysis of Geothermal Fluid in the Zhaxikang Geothermal Field in Cuona County, Southern Tibet. Environmental Earth Sciences, 80(11): 415. https://doi.org/10.1007/s12665⁃021⁃09577⁃8 |
| [34] |
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 |
| [35] |
Wei, Z. G., Huang, S. P., Xu, J. W., et al., 2024. Geochemical Evolution of Geothermal Waters in the Pearl River Delta Region, South China: Insights from Water Chemistry and Isotope Geochemistry. Journal of Hydrology: Regional Studies, 51: 101670. https://doi.org/10.1016/j.ejrh.2024.101670 |
| [36] |
Wei, Z. G., Shao, H. B., Tang, L., et al., 2021. Hydrogeochemistry and Geothermometry of Geothermal Waters from the Pearl River Delta Region, South China. Geothermics, 96: 102164. https://doi.org/10.1016/j.geothermics.2021.102164 |
| [37] |
Xiong, B., Xu, H., Tang, S. L., et al., 2024. Genetic Mechanisms of Hot Dry Rock Geothermal Resources in Central Inner Mongolia. Coal Geology & Exploration, 52(1): 36-45 (in Chinese with English abstract). |
| [38] |
Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract). |
| [39] |
Yang, C., Qu, W. G., Ren, W. H., et al., 2024. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Yinchuan Basin. Science Technology and Engineering, 24(30): 12874-12884 (in Chinese with English abstract). |
| [40] |
Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation). China University of Geosciences (Wuhan), Wuhan (in Chinese with English abstract). |
| [41] |
Yuan, J. F., Xu, F., Zheng, T. L., 2022. The Genesis of Saline Geothermal Groundwater in the Coastal Area of Guangdong Province: Insight from Hydrochemical and Isotopic Analysis. Journal of Hydrology, 605: 127345. https://doi.org/10.1016/j.jhydrol.2021.127345 |
| [42] |
Zhang, H. N., Zhao, H. M., 1990. Preliminary Study on Late Pleistocene⁃Holocene Sea⁃Level Changes along the South China Coast. Acta Oceanologica Sinica, 12(5): 620-630 (in Chinese). |
| [43] |
Zhang, L., Chen, S., Zhang, C., 2019. Geothermal Power Generation in China: Status and Prospects. Energy Science & Engineering, 7(5): 1428-1450. https://doi.org/10.1002/ese3.365 |
| [44] |
Zhang, R. Q., Liang, X., Jin, M. G., et al., 2018. Fundamentals of Hydrogeology (7th Edition). Geological Publishing House, Beijing (in Chinese). |
| [45] |
Zhao, B. Y., Wang, S., Chen, F., et al., 2024. Hydrogeochemical Characteristics and Genesis of Medium⁃High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748 (in Chinese with English abstract). |
| [46] |
Zhao, C. R., Yang, J. L., Xiao, G. Q., et al., 2012. Hydrogeochemical Reactions and Hydrogeological Model for Sea Water Intrusion Processes in the Daweijia Water Source Area, Dalian City. Geological Survey and Research, 35(2): 154-160 (in Chinese with English abstract). |
| [47] |
Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic High⁃Heat⁃Producing (HHP) and High⁃Temperature Geothermal Reservoir Granitoids: The Most Significant Geothermal Mechanism in South China. Lithos, 366: 105568. https://doi.org/10.1016/j.lithos.2020.105568 |
| [48] |
Zhu, D. B., Mao, X. M., He, Y. Y., et al., 2020. Research on 14C Age Correction for Mixed Groundwater in Lateral Flow of Discharge Zones. Geological Review, 66(S1): 51-53 (in Chinese). |
| [49] |
Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466-483. https://doi.org/10.1016/j.energy.2015.08.098 |
地球深部探测与矿产资源勘查国家科技重大专项(2024ZD1003601)
国家自然科学基金项目(42202334)
/
| 〈 |
|
〉 |