神农架莲花剖面埃迪卡拉纪晚期宏体碳质压膜化石

毛宁凤 ,  陈晨 ,  叶琴 ,  安志辉 ,  胡军 ,  童金南

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3704 -3716.

PDF (13393KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3704 -3716. DOI: 10.3799/dqkx.2025.107

神农架莲花剖面埃迪卡拉纪晚期宏体碳质压膜化石

作者信息 +

Macroscopic Carbonaceous Compression Fossils from Late Ediacaran Miaohe Member at the Lianhua Section in Shennongjia Area

Author information +
文章历史 +
PDF (13714K)

摘要

埃迪卡拉纪庙河生物群是“雪球地球”崩解后至寒武纪生命大爆发前夕复杂多细胞真核生命演化和辐射的重要实证之一.近年来人们在鄂西地区埃迪卡拉系报道了多个庙河生物群产地,并对其赋存层位(庙河段)的地层对比提出了不同认识.为更好地揭示庙河生物群在不同地区/相区的化石组合面貌,本文在神农架东部地区莲花剖面庙河生物群新化石产地进行了系统古生物学工作.共鉴定宏体化石11属12种,含有以往报道的庙河生物群的典型分子,其优势分子为Cucullus fraudulentusBaculiphyca taeniataGrypania spiralis.该宏体化石组合的发现,不仅扩大了庙河生物群的古地理分布范围,也为在不同沉积环境中认识埃迪卡拉纪宏体生物演化提供重要支撑.

Abstract

The Ediacaran Miaohe biota is one of the key windows on the evolution and radiation of complex multicellular eukaryotes between the Snowball Earth and the Cambrian Explosion. Recently, several localities of the Miaohe biota have been reported in western Hubei Province, sparking different opinions on its stratigraphic position. In order to better reveal characteristics of the Miaohe biota in different regions/facies, we conducted systematic paleontological analysis on a newly discovered fossil site of the Miaohe biota at the Lianhua section in eastern Shennongjia area. A total of 11 genera and 12 species of macrofossils were identified, including typical fossils previously described in the Miaohe biota, with dominant species being Cucullus fraudulentus, Baculiphyca taeniata and Grypania spiralis. The discovery of the new macrofossil assemblage not only expands the paleogeographic distribution of the Miaohe biota, but also provides significant insights into the evolution of Ediacaran macrofossils in different environments.

Graphical abstract

关键词

埃迪卡拉纪 / 庙河生物群 / 庙河段 / 宏体碳质压膜化石 / 神农架 / 地层学 / 沉积学.

Key words

Ediacaran / Miaohe biota / Miaohe Member / macroscopic carbonaceous compression fossils / Shennongjia area / stratigraphy / sedimentology

引用本文

引用格式 ▾
毛宁凤,陈晨,叶琴,安志辉,胡军,童金南. 神农架莲花剖面埃迪卡拉纪晚期宏体碳质压膜化石[J]. 地球科学, 2025, 50(09): 3704-3716 DOI:10.3799/dqkx.2025.107

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

埃迪卡拉纪(635.0~538.8 Ma)是地球生命演化的关键转折时期(Butterfield, 2007).华南庙河生物群产出大量保存精美的宏体碳质压膜化石,包括多细胞藻类和可能的后生动物(Xiao et al., 2002),是寒武纪生命大爆发前夕生物多细胞化、组织化和宏体形态多样化的演化实证,成为研究地球早期生命演化的重要窗口之一.

庙河生物群最初发现于华南峡东地区庙河村附近,被认为产于埃迪卡拉纪陡山沱组顶部的黑色页岩中,前人对其化石组合面貌和生物学属性进行了研究,并参考产出地点,将其命名为庙河生物群(陈孟莪等, 1994; 丁莲芳等, 1996; Xiao et al., 2002),其上限年龄被约束在~550 Ma(Yang et al., 2021).然而,庙河生物群自首次发现三十多年之后,除庙河村外,并没有在峡东其他地区的陡山沱组第四段黑色碳质页岩中被发现.近年来,大量野外剖面对比研究显示,黄陵背斜周缘埃迪卡拉纪晚期地层存在明显的区域岩性变化(安志辉等, 2024),An et al.(2015)对庙河生物群赋存层位(称为庙河段)的地层对比提出高于陡山沱组第四段而与灯影组石板滩段下部相当的新方案.同时,在神农架‒峡东地区多个埃迪卡拉纪灯影组剖面中找到与庙河生物群类似的宏体碳质压膜化石(An et al., 2015Ye et al., 2019,2022),新化石点与原庙河村化石点的化石组合特征具有一定的可对比性.因此,将庙河生物群扩大为所有在庙河段及其相当层位被发现的宏体多细胞生物组合的统称(Ye et al., 2019).为更全面地揭示庙河生物群在复杂多细胞生命演化过程中的意义,亟需在不同地/岩相区开展研究.

目前,已发现庙河生物群化石的剖面包括黄陵背斜西侧的庙河村剖面、芝麻坪剖面、麻溪剖面、神农架三里荒剖面等.其中庙河村剖面、芝麻坪剖面和三里荒剖面的庙河段均以黑色硅质页岩为主,底部发育黑色碳质页岩;麻溪剖面庙河段包括黑色碳质页岩和泥质灰岩(安志辉等, 2024).神农架东部地区莲花剖面在区域上位于三里荒剖面和麻溪剖面之间,从岩性特征来看,其庙河段均为黑色碳质页岩,与上述其他剖面不同.本文选择莲花剖面埃迪卡拉纪晚期地层中新发现的宏体碳质压膜化石开展详细研究.通过揭示其化石组合面貌,并与埃迪卡拉纪晚期其他宏体碳质压膜化石组合进行对比,为认识埃迪卡拉纪晚期复杂多细胞生命演化过程提供重要支撑.

1 地质背景与剖面描述

华南埃迪卡拉系沉积于扬子板块之上的稳定被动大陆边缘(Zhou et al., 2007Wang et al., 2021),发育碳酸盐岩和硅‒泥质碎屑岩(Jiang et al., 2011).峡东地区埃迪卡拉系覆于成冰系南沱组冰碛杂砾岩之上,并被寒武系岩家河组碳酸盐岩覆盖,由陡山沱组和灯影组组成.其中陡山沱组被划分为四个岩性段(丁莲芳等, 1996; Liu et al., 2013; 周传明等, 2021),灯影组一般被划分为蛤蟆井段、石板滩段和白马沱段(安志辉等, 2024).峡东地区完整而连续的埃迪卡拉纪地层序列可以作为华南埃迪卡拉系对比的参考.

神农架地区位于华南扬子板块的北部,地层呈背斜穹窿状展布,主要由核部的中元古代神农架群和周缘的新元古代晚期至显生宙早期地层组成(Qiu et al., 2011; 李怀坤等, 2013).神农架西部新元古代地层包括拉伸系莲沱组,成冰系古城组、大塘坡组、南沱组,埃迪卡拉系陡山沱组和灯影组;神农架东部成冰系仅发育南沱组,埃迪卡拉系包括陡山沱组和灯影组(Hu et al., 2020; 谷昊东等, 2021; 安志辉等, 2023).

研究剖面位于神农架东部地区宋洛乡莲花村附近(图1),下部沿公路出露(剖面起点GPS: 31°40′56″N,110°42′51″E),上部沿山坡小径测制(剖面终点GPS: 31°40′50″N,110°42′54″E),包括南沱组、陡山沱组与灯影组蛤蟆井段、庙河段和石板滩段下部地层.剖面中南沱组为一套冰碛杂砾岩,不整合于神农架群之上,厚度一般小于1 m.陡山沱组发育四个岩性段,与黄陵背斜周缘陡山沱组可以对比.第一段为盖帽白云岩,以浅灰色厚层状白云岩为主,厚3.5 m.第二段下部为黑色页岩,顶部发育条带状磷块岩,厚12.5 m;中部为浅灰色厚层状白云岩夹磷质条带或碎屑,厚1.9 m;上部为深灰色中‒薄层状白云岩,含硅质结核,厚21.4 m.第三段下部40 m为灰‒浅灰色厚层状白云岩(图2a),上部6.0 m为灰色薄层状白云岩.第四段为黑色碳质页岩,夹“锅底状”碳酸盐岩结核(图2b),厚12.0 m.灯影组地层划分与黄陵背斜西缘的芝麻坪剖面相似(安志辉等, 2024),剖面中出露蛤蟆井段、庙河段和石板滩段下部地层.本文参考An et al.(2015)的划分方案,将庙河段划归至灯影组.蛤蟆井段为一套浅灰色‒灰白色厚层状白云岩(图2c),厚23.7 m.庙河段整体为一套黑色碳质页岩,厚16.6 m(图2d).石板滩段下部为深灰色‒灰黑色薄层状沥青质灰岩(图2e),向上植被覆盖较多,实测剖面未至顶.

2 莲花剖面庙河段宏体化石组成

莲花剖面埃迪卡拉纪庙河段黑色页岩出露厚度16.6 m,笔者对其进行了高精度、逐米的化石挖掘工作(图3),其中距庙河段底界3.3~14.3 m处产出化石,共采集标本1 668枚.总体来说,化石呈碳质压膜形式保存,大小为毫米至厘米级,可见囊带状、棒状、圆盘状、管状、锥状和分枝状等多种不同形态.可鉴定出11属12种(图4图5),即Baculiphyca taeniata、Cucullus fraudulentus、Chuaria circularis、Doushantuophyton lineare、Grypania spiralis、Jiuqunaoella simplicis、Konglingiphyton erecta、Liulingjitaenia alloplecta、Protoconites minor、Sinocylindra yunnanensis、Sinospongia typicaS. chenjunyuani.

莲花剖面化石组合中,Cucullus fraudulentus标本数量最多,约占化石总量的67.0%(图3图5).该化石呈深灰色‒灰黑色,表面可见垂直或近于垂直化石轴向的不规则弯曲细丝,相互交叉形成网状结构(图4a),一些标本端部还保存有圆形结构(图4b),所有标本宽度在3.9~17.0 mm之间,最长可达61 mm.Baculiphyca taeniata数量次之,占总数的10.0%.化石保存较为完整,叶状体可见弯曲、折叠保存(图4c),总体长度在4.5~33.6 mm之间,宽度为1.2~3.5 mm;底部可见球状固着器(图4d),固着器直径在0.10~0.16 mm之间.Grypania spiralis占化石总量的5.9%,为螺旋带状化石,形态呈近椭圆形的卷曲状、蛇曲状和蜿蜒状,大部分化石的旋转圈数为3圈,一般小于6圈(图4e).带状体两侧边缘平行,宽度保持一致,为0.08~0.23 mm,螺旋体直径在6.2~18.5 mm之间,带状体常保存不完整,长度最大可至50.3 mm.莲花剖面中数量较多的化石还包括JiuqunaoellaLiulingjitaeniaSinocylindraSinospongia,共占化石总量的13.6%.其中Liulingjitaenia占化石总量的4.2%,由大量丝体螺旋缠绕成束状,保存不完整(图4h),最长可达72 mm(图4i).Jiuqunaoella占所采化石的4.1%,为不分枝的带状体化石,带状体的宽度较为均匀,为0.09~0.39 mm,带状体最长可达24.7 mm.带状体呈直(图4g)或弯曲状(图4f),偶见不连续的横向褶皱和收缩现象(图4f),以此与Grypania spiralis区分.Sinospongia为不分枝的管状化石,占化石总数量的2.9%,包含2个种:S. chenjunyuani表面的不规则横向皱起多交叉形成网状结构(图4k~4l),所获标本多保存不完整,可见长度为22.1~43.4 mm,宽度为4.5~7.9 mm; S. typica表面则具有紧密平行排列的平直横纹(图4m),长度最大可至23.3 mm,宽度一般在1.4~5.6 mm.SinospongiaCucullus都具有管状或囊带状结构,但Sinospongia通常较小,有机质壁厚,且表面可见明显的、规则的横向或网状褶皱,故可与Cucullus区分(Xiao et al., 2002).Sinocylindra yunnanensis占化石总量的2.4%,为不分枝的带状体,带状体呈弯曲、折叠状(图4j),其宽度随长度的变化保持一致,宽度最大为1.4 mm,未见固着器.Konglingiphyton erectaProtoconites minor数量较少:Protoconites minor占化石总量的1.6%,为不分枝的锥状体,锥体一端尖,另外一端扩散边缘较为平直,锥状体表面光滑,未见固着器结构(图4n);Konglingiphyton erecta占化石总量的1.1%,化石结构清晰,呈二歧分枝状,自下而上分枝变宽(图4o),远端最大宽度为1.5 mm.此外,Chuaria circularisDoushantuophyton lineare这两类化石虽有发现,但数量较少(占化石总量的0.8%):Chuaria circularis是一类简单圆盘状化石,边缘光滑,未见重叠现象(图4p~4q);Doushantuophyton lineare为规则二歧分枝丝状体,分枝柔软细小(图4r),藻枝宽度最大为0.3 mm.

3 莲花化石组合与埃迪卡拉纪晚期其他宏体碳质压膜化石组合对比

前人在华南埃迪卡拉系已发现多个特异埋藏生物群,包括安徽地区蓝田组中的蓝田生物群(Yuan et al., 1999,2011)、贵州地区陡山沱组中的瓮安生物群(袁训来等, 2002; Xiao et al., 2014)、湖北地区灯影组庙河段中的庙河生物群(Xiao et al., 2002; 唐烽等, 2008; Ye et al., 2019)、贵州地区陡山沱组中的瓮会生物群(Zhao et al., 2004; 王约等, 2007)、湖南地区留茶坡组中的武陵山生物群(陈孝红等, 1999; 陈孝红和汪啸风, 2002)、陕南地区灯影组高家山段中的高家山生物群(华洪等, 2020)、湖北地区灯影组石板滩段中的石板滩生物群(Xiao et al., 2021)和云南地区灯影组旧城段中的江川生物群(唐烽等, 2007)等.目前主要以碳质压膜形式保存的埃迪卡拉纪晚期的宏体化石组合产地包括:湖北秭归庙河村、湖北秭归芝麻坪、湖北兴山麻溪、湖北神农架林区三里荒、贵州瓮会和湖南武陵山.各生物群组合中的代表性化石属:庙河村化石组合为MiaohephytonBaculiphycaDoushantuophyton(陈孟莪等, 1994; 丁莲芳等, 1996; Xiao et al., 2002; 袁训来等, 2002);瓮会为Zhongbaodaophyton、LinbotulitaeniaGlobusphyton(王约等, 2007; 唐烽等, 2008; Wang and Wang, 2011);麻溪为GrypaniaBaculiphycaDoushantuophytonYe et al., 2019);三里荒为SinocylindraEnteromorphitesYe et al., 2019);芝麻坪为CucullusSinospongiaYe et al., 2019);武陵山为Longifuniculum、ChuariaGesinella(陈孝红等, 1999; 陈孝红和汪啸风, 2002).本文将莲花剖面这一新地点宏体化石面貌与上述各化石组合/群进行对比.

在鄂西地区浅水环境中,莲花剖面化石组合与庙河村、麻溪、芝麻坪、三里荒等化石组合相比,既具有共性分子,也存在优势分子的差异(图6).其中莲花化石组合与庙河村化石组合拥有的共同化石属种达10属11种,包括Baculiphyca taeniataCucullus fraudulentusDoushantuophyton lineareJiuqunaoella simplicisGrypania spiralisKonglingiphyton erectaLiulingjitaenia alloplectaProtoconites minorSinocylindra yunnanensisSinospongia chenjunyuaniS. typica.但上述共同化石属种的相对丰度在这两个组合中差别较大:如莲花组合中囊带状化石Cucullus fraudulentus丰度最大(图7b),占化石总量的67%;其次是Baculiphyca taeniata(10%)和Grypania spiralis(6%),而在庙河村化石组合中数量最多的分枝状化石Miaohephyton bifurcatum(15%)在莲花组合中未被发现.从优势形态而言,庙河村组合以分枝状化石为主,其次为棒状和管状化石,莲花组合则以囊带状化石占主导,其次为棒状,带状次之.莲花化石组合与麻溪化石组合所拥有的共同化石同样为10属11种,包括Baculiphyca taeniataChuaria circularisDoushantuophyton lineareJiuqunaoella simplicisGrypania spiralisKonglingiphyton erectaLiulingjitaenia alloplectaProtoconites minorSinocylindra yunnanensisSinospongia chenjunyuaniS. typica.其中麻溪化石组合以带状化石Grypania spiralis丰度最大(图7b),占化石总量的34%,棒状化石Baculiphyca taeniata次之(15%),其次为分枝状化石Doushantuophyton lineare(14%),但不具有莲花组合中的优势属种Cucullus fraudulentus.形态占比上也有所体现,麻溪组合的优势形态分子为带状化石,分枝状和棒状化石次之,与莲花组合存在一定差异.莲花组合与芝麻坪组合拥有的共同化石属种共6属7种,包括Baculiphyca taeniataChuaria circularisCucullus fraudulentusGrypania spiralisProtoconites minorSinospongia chenjunyuaniS. typica.其中芝麻坪组合的优势属种为囊带状化石Cucullus fraudulentus图7b),占化石属种数量的36%,其次为管状化石Sinospongia typica(20%)和棒状化石Baculiphyca taeniata(15%).在优势形态属上亦有体现,芝麻坪组合的优势形态分子为囊带状、管状和棒状化石,与莲花组合有一定相似性.莲花组合与三里荒组合拥有的共同化石为6属6种,包括Baculiphyca taeniataChuaria circularisCucullus fraudulentusDoushantuophyton lineareProtoconites minorSinocylindra yunnanensis.三里荒组合化石总量占比最大的为管状化石Sinocylindra yunnanensis(53%),分枝状化石Enteromorphites siniansis(16%)和Enteromorphites magnus(11%)次之.三里荒组合优势形态属依次为管状化石、分枝状化石和棒状化石,与莲花组合差异明显.

神农架莲花组合与深水相的瓮会生物群和武陵山生物群之间也存在共性分子,同时具有不同的优势属种.莲花组合与贵州江口地区的瓮会生物群之间的相同属种为8属8种,包括Baculiphyca taeniataChuaria circularisCucullus fraudulentusDoushantuophyton lineareGrypania spiralisLiulingjitaenia alloplectaProtoconites minorSinocylindra yunnanensis.其中瓮会生物群以Zhongbaodaophyton属化石最为丰富(图7b),占化石属种数量的20%,其次为Linbotulitaenia(11%)和Globusphyton(9%);其形态上以分枝状化石占主导优势,在优势形态分子和属种占比方面均明显区别于莲花组合(图7).莲花组合与湖南桃源地区的武陵山生物群之间的共同化石属种最少,仅3属3种,为Baculiphyca taeniataCucullus fraudulentusSinospongia typica,武陵山生物群以丝状体束状化石Longifuniculum dissolutum丰度最大(44%),其次为圆盘状化石Chuaria circularis(32%),再次为棒状化石Gesinella hunanensis(17%);形态上,武陵山生物群以丝状体束状化石占优势,与以囊带状化石为主的莲花组合有所区别.

上述结果也可通过聚类分析直观展示(图7a),莲花组合与麻溪、庙河村组合的化石面貌更为相似,Jaccard相似度系数分别达到58.8%和47.8%;而与瓮会生物群的相似性最小,Jaccard相似度系数为25.0%.此外,网络分析的结果也清晰地展示了上述不同化石组合间的异同(图8),莲花组合与麻溪及庙河村组合共有属较多,生物面貌较为相似,与瓮会组合的共有属最少.

莲花化石组合与上述各个化石组合之间虽然保存有共性分子,但存在不同优势属种分子(图6图7),可能与化石埋藏和生存环境有关.从化石埋藏来说,庙河村剖面宏体化石多以碳质压膜形式保存在碳质页岩中(Xiao et al., 2002),一些标本可见紧密保存的草莓状黄铁矿(Anderson et al., 2011Wang et al., 2014);麻溪宏体化石保存在泥质灰岩中,可见黑色碳质压膜,但大多呈黄褐色‒红色,表明其保存受黄铁矿化的影响较大(Ye et al., 2019);瓮会生物群则以碳质压膜形式保存于黑色碳质泥岩和硅质泥岩中(王约等, 2007).莲花剖面宏体化石以碳质压膜形式产出在碳质页岩中,与上述不同化石组合埋藏条件存在一些差异.另一方面,莲花剖面庙河段宏体碳质压膜化石具有一定程度的破碎,但化石保存不具有定向性,偶见小型圆盘状固着器,说明它们应是近原地埋藏,处于相对宁静但具有一定水动力条件的沉积环境.从化石组成上也能体现,莲花剖面宏体化石组合中数量最丰富的类型是囊带状化石Cucullus,该类型生物主要生活在低能、平静的贫氧环境中(Wang and Wang, 2011).其次还含有一些底栖宏体藻类,如BaculiphycaKonglingiphyton,前者属性分析表明其可归属为绿藻(Xiao et al., 2002),后者是一种分枝类型化石.结合现代海藻的垂直分布情况,分枝藻类常生长在较浅的水域(Croce et al., 2021),绿藻一般分布在水体较浅的潮上带或潮间带(Croce et al., 2021),说明莲花剖面庙河段沉积时期藻类生存水体较浅.

此外,岩相古地理分析表明,神农架地区在埃迪卡拉纪处于局限台地潮坪相(Jiang et al., 2011),也说明神农架东区莲花剖面庙河段宏体碳质压膜化石生存在水体较浅的局限碳酸盐岩台地潮坪环境中,具有低能、平静的浅水条件.相比而言,湖北三峡地区庙河剖面化石组合生存在扬子地台内的浅水低能盆地环境(朱茂炎, 2010).贵州江口地区的瓮会生物群生存于扬子地台的上斜坡环境,基本处于低潮线下略深的水体环境中(Wang et al., 2016),并伴随由一定洋流导致的快速堆积事件(王约等, 2007;唐烽等, 2008).湖南桃源地区的武陵山生物群则主要发育于扬子地台的斜坡到较深水盆地环境(朱茂炎, 2010).上述剖面与莲花剖面相比拥有不同的沉积古地理环境.因此,莲花剖面与上述不同地区化石组合之间的差异,可能与化石埋藏和岩相古地理等因素有关.

4 结论

通过对神农架东区莲花剖面埃迪卡拉纪晚期庙河段宏体碳质压膜化石的研究,共鉴定出11属12种,优势分子为Cucullus fraudulentusBaculiphyca taeniataGrypania spiralis.与埃迪卡拉纪晚期已报道的化石点相比,它们具有大体相同的化石类型.属种对比及统计分析表明,莲花化石组合与庙河村和麻溪的化石面貌更相似,具有较多相似类型化石,但存在不同优势属种分子.神农架东区莲花剖面新化石点的发现,扩大了庙河生物群的古地理分布范围,是埃迪卡拉纪宏体化石材料的重要补充.而庙河生物群在不同化石组合中的丰度变化,可能与岩相古地理及埋藏环境有关,可为全面认识埃迪卡拉纪晚期不同环境中宏体多细胞生物组合面貌提供重要支撑.

参考文献

[1]

An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007

[2]

An, Z. H., Ye, Q., Hu, J., et al., 2023. Stratigraphic Position of Cryogenian Songluo Biota in Shennongjia Area. Earth Science, 48(10): 3799-3811 (in Chinese with English abstract).

[3]

An, Z. H., Ye, Q., Tong, J. N., et al., 2024. Stratigraphic Sequence of the Ediacaran Dengying Formation around the Huangling Anticline, Western Hubei Provence: Implications for Regional Stratigraphic Correlation. Earth Science, 49(8): 2992-3009 (in Chinese with English abstract).

[4]

Anderson, E. P., Schiffbauer, J. D., Xiao, S. H., 2011. Taphonomic Study of Ediacaran Organic⁃Walled Fossils Confirms the Importance of Clay Minerals and Pyrite in Burgess Shale⁃Type Preservation. Geology, 39(7): 643-646. https://doi.org/10.1130/g31969.1

[5]

Butterfield, N. J., 2007. Macroevolution and Macroecology through Deep Time. Palaeontology, 50(1): 41-55. https://doi.org/10.1111/j.1475⁃4983.2006.00613.x

[6]

Chen, M. E., Xiao, Z. Z., Yuan, X. L., 1994. A New Assemblage of Megafossils⁃Miaohe Biota from Upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica, 33(4): 391-403 (in Chinese with English abstract).

[7]

Chen, X. H., Wang, X. F., 2002. Morphology and Systematics of Fossils in the Sinian Wulingshan Biota from Western Hunan Province. Geological Bulletin of China, 21(10): 638-645 (in Chinese with English abstract).

[8]

Chen, X. H., Wang, X. F., Wang, C. S., et al., 1999. A Preliminary Study on Carbonaceous Megafossils from the Late Sinian Liuchapo Formation of West Hunan. Geology and Mineral Resources of South China, 15(2): 15-30 (in Chinese with English abstract).

[9]

Croce, M. E., Gauna, M. C., Fernández, C., et al., 2021. Biology and Ecology of the Benthic Algae. In: Fiori, S. M., Pratolongo, P. D., eds., The Bahía Blanca Estuary. Springer International Publishing, Cham, 113-151. https://doi.org/10.1007/978⁃3⁃030⁃66486⁃2_6

[10]

Ding, L. F., Li, Y., Hu, X. S., et al., 1996. Sinian Miaohe Biota. Geological Publishing House, Beijing, (in Chinese).

[11]

Gu, H. D., Hu, J., An, Z. H., et al., 2021. Sedimentary Characteristics of Doushantuo Formation in Shennongjia Area: Implications for “West Hubei Trough”. Earth Science, 46(8): 2958-2972 (in Chinese with English abstract).

[12]

Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969

[13]

Hua, H., Cai, Y. P., Min, X., et al., 2020. Ecological Diversity in the Terminal Ediacaran Gaojiashan Biota. Earth Science Frontiers, 27(6): 28-46 (in Chinese with English abstract).

[14]

Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006

[15]

Li, H. K., Zhang, C. L., Xiang, Z. Q., et al., 2013. Zircon and Baddeleyite U⁃Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract).

[16]

Liu, P. J., Yin, C. Y., Chen, S. M., et al., 2013. The Biostratigraphic Succession of Acanthomorphic Acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges Area, South China and Its Biostratigraphic Correlation with Australia. Precambrian Research, 225: 29-43. https://doi.org/10.1016/j.precamres.2011.07.009

[17]

Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3-4): 101-119. https://doi.org/10.1016/j.precamres.2011.09.011

[18]

Tang, F., Yin, C. Y., Liu, P. J., et al., 2007. Discovery of Diverse Macrofossil Assemblages from the Jiucheng Member of Uppermost Ediacaran in Eastern Yunnan. Journal of Palaeogeography, 9(5): 533-540 (in Chinese with English abstract).

[19]

Tang, F., Yin, C. Y., Liu, P. J., et al., 2008. Morphological Comparison of the Ediacaran Miaohe Biota from South China: Implications for Their Affinities and Ecology. Acta Geologica Sinica, 82(5): 601-611, 725-727 (in Chinese with English abstract).

[20]

Wang, W., Cawood, P. A., Pandit, M. K., et al., 2021. Fragmentation of South China from Greater India during the Rodinia⁃Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/g48308.1

[21]

Wang, W., Guan, C., Zhou, C., et al., 2014. Exceptional Preservation of Macrofossils from the Ediacaran Lantian and Miaohe Biotas, South China. Palaios, 29(3): 129-136. https://doi.org/10.2110/palo.2013.085

[22]

Wang, Y., 2020. The Ediacaran Wenghui Biota in Northeast Guizhou, South China and the Environment before Its “Explosive Prosperity” (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[23]

Wang, Y., 2009. Megascopic Biota from the Doushantuoian of the Neoproterozoic (Ediacaran) in Guizhou and Zhongqing, South China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[24]

Wang, Y., Wang, X. L., 2011. New Observations on Cucullus Steiner from the Neoproterozoic Doushantuo Formation of Guizhou, South China. Lethaia, 44(3): 275-286. https://doi.org/10.1111/j.1502⁃3931.2010.00241.x

[25]

Wang, Y., Wang, X. L., Huang, Y. M., 2007. Macroscopic Algae from the Ediacaran Doushantuo Formation in Northeast Guizhou, South China. Earth Science, 32(6): 828-844 (in Chinese with English abstract).

[26]

Wang, Y., Wang, Y., Du, W., 2016. The Long⁃Ranging Macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China. Alcheringa: an Australasian Journal of Palaeontology, 40(3): 303-312. https://doi.org/10.1080/03115518.2016.1127725

[27]

Xiao, S. H., Chen, Z., Pang, K., et al., 2021. The Shibantan Lagerstätte: Insights into the Proterozoic⁃Phanerozoic Transition. Journal of the Geological Society, 178(1): jgs2020-jgs2135. https://doi.org/10.1144/jgs2020⁃135

[28]

Xiao, S. H., Muscente, A. D., Chen, L., et al., 2014. The Weng’an Biota and the Ediacaran Radiation of Multicellular Eukaryotes. National Science Review, 1(4): 498-520. https://doi.org/10.1093/nsr/nwu061

[29]

Xiao, S. H., Yuan, X. L., Steiner, M., et al., 2002. Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76(2): 347-376. https://doi.org/10.1666/0022⁃3360(2002)0760347: mcciat>2.0.co;2

[30]

Yang, C., Rooney, A. D., Condon, D. J., et al., 2021. The Tempo of Ediacaran Evolution. Science Advances, 7(45): eabi9643. https://doi.org/10.1126/sciadv.abi9643

[31]

Ye, Q., Li, J. Q., Tong, J. N., et al., 2022. A Microfossil Assemblage from the Ediacaran Doushantuo Formation in the Shennongjia Area (Hubei Province, South China): Filling Critical Paleoenvironmental and Biostratigraphic Gaps. Precambrian Research, 377: 106691. https://doi.org/10.1016/j.precamres.2022.106691

[32]

Ye, Q., Tong, J. N., An, Z. H., et al., 2019. A Systematic Description of New Macrofossil Material from the Upper Ediacaran Miaohe Member in South China. Journal of Systematic Palaeontology, 17(3): 183-238. https://doi.org/10.1080/14772019.2017.1404499

[33]

Yuan, X. L., Chen, Z., Xiao, S. H., et al., 2011. An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes. Nature, 470(7334): 390-393. https://doi.org/10.1038/nature09810

[34]

Yuan, X. L., Li, J., Cao, R. J., 1999. A Diverse Metaphyte Assemblage from the Neoproterozoic Black Shales of South China. Lethaia, 32(2): 143-155. https://doi.org/10.1111/j.1502⁃3931.1999.tb00533.x

[35]

Yuan, X. L., Xiao, S. H., Yin, L. M., et al., 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. University of Science and Technology of China Press, Hefei (in Chinese with English abstract).

[36]

Zhao, Y. L., Chen, M. E., Peng, J., et al., 2004. Discovery of a Miaohe⁃Type Biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chinese Science Bulletin, 49(20): 2224-2226. https://doi.org/10.1007/BF03185792

[37]

Zhou, C. M., Ouyang, Q., Wang, W., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Ediacaran in China. Journal of Stratigraphy, 45(3): 211-222 (in Chinese with English abstract).

[38]

Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo⁃Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3-4): 229-262. https://doi.org/10.1002/gj.1062

[39]

Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract).

基金资助

重点研发青年科学家项目(2024YFF0810300)

国家自然科学基金项目(42372024)

国家自然科学基金项目(41902004)

国家自然科学基金项目(41802206)

中国地质调查局项目(DD20230006)

中国地质调查局项目(DD202301001)

古生物学与油气地层应用全国重点实验室(中国科学院南京地质古生物研究所)项目(213125)

湖北省自然科学基金项目(2024AFB980)

AI Summary AI Mindmap
PDF (13393KB)

103

访问

0

被引

详细

导航
相关文章

AI思维导图

/