1982-2018年总初级生产力对不同时空尺度干旱类型的响应
凌肖露 , 李承刚 , 牛晓瑞 , 刘文昊 , 周梓童
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3340 -3356.
1982-2018年总初级生产力对不同时空尺度干旱类型的响应
Response of Gross Primary Productivity to Different Types of Drought across Various Spatial and Temporal Scales from 1982 to 2018
,
为准确估测不同类型的干旱对植被生态系统的影响,基于Mann-Kendall、Pearson相关分析等方法,利用1982-2018年的总初级生产力(GPP)数据集以及不同时间尺度的干旱指数(包括scPDSI、SPEI和SPI),定量评估了我国植被GPP对不同时空尺度干旱类型的响应.结果显示,我国干旱化趋势最显著的区域是内蒙古,区域平均的scPDSI、SPEI和SPI分别以每年0.039、0.026和0.004的速率下降.不同区域的GPP与干旱指数的相关性和滞后效应差异显著.华东和华南地区对农业干旱的响应最为显著,平均滞后时间为4~6个月.内蒙古、西北和西南地区对气象干旱的响应更为剧烈,平均滞后时间为9~11个月.华中和华东地区对气象干旱的响应周期较短,为0~3个月.
To describe the evolution characteristics of different types of drought and accurately estimate their impact on ecosystems, based on methods such as Mann-Kendall and Pearson correlation coefficients, using the gross primary productivity (GPP) dataset from 1982 to 2018 and concurrent drought indices at different time scales (including scPDSI, SPEI, and SPI), a quantitative assessment was conducted on the response mechanism of the GPP of vegetation in China to different spatiotemporal scales of drought types. The results show that the most significant trend of drought intensification in China is in Inner Mongolia, with the regional averaged scPDSI, SPEI, and SPI declining at an annual rate of 0.039, 0.026, and 0.004, respectively. Further analysis indicates that there are significant differences in the correlation and lag effects between GPP and monthly drought indices in various regions of China. The response to the agricultural drought index is most pronounced in the East China and South China regions, with an average lag time of 4 to 6 months. In contrast, the Inner Mongolia, Northwest, and Southwest regions have a more intense response to meteorological drought, with an average lag time of 9 to 11 months, while the Central and East China regions have a shorter response cycle to meteorological drought, only 0 to 3 months.
总初级生产力 / 气象干旱 / 农业干旱 / 时滞效应 / 累积效应 / 遥感 / 气候学.
gross primary productivity / meteorological drought / agricultural drought / time⁃lag effect / cumulative effect / remote sensing / climatology
| [1] |
Barichivich, J., Osborn, T. J., Harris, I., et al., 2022. Monitoring Global Drought Using the Self⁃Calibrating Palmer Drought Severity Index [in “State of the Climate in 2021”]. Bulletin of the American Meteorological Society, 103(8): S31-S33. https://doi.org/10.1175/BAMS⁃D⁃22⁃0092.1 |
| [2] |
Beguería, S., Vicente⁃Serrano, S. M., Angulo⁃Martínez, M., 2010. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Impacts. Bulletin of the American Meteorological Society, 91(10): 1351-1356. https://doi.org/10.1175/2010bams2988.1 |
| [3] |
Beguería, S., Vicente⁃Serrano, S. M., Reig, F., et al., 2014. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. International Journal of Climatology, 34(10): 3001-3023. https://doi.org/10.1002/joc.3887 |
| [4] |
Campbell, J. E., Berry, J. A., Seibt, U., et al., 2017. Large Historical Growth in Global Terrestrial Gross Primary Production. Nature, 544(7648): 84-87. https://doi.org/10.1038/nature22030 |
| [5] |
Douville, H., Raghavan, K., Renwick, J., et al., 2021. Water Cycle Changes. In: Masson⁃Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge. |
| [6] |
Du, W. L., Sun, S. B., Wu, Y. T., et al., 2020. The Responses of Gross Primary Production to Drought in Terrestrial Ecosystems of China during 1980-2013. Chinese Journal of Ecology, 39(1): 23-35 (in Chinese with English abstract). |
| [7] |
Fu, C. B., An, Z. S., Guo, W. D., 2005. Evolution of life⁃Supporting Environment in Our Nation and the Predictive Study of Aridification in Northern China (Ⅰ): Main Scientific Issues and Achievements. Advance in Earth Sciences, 20(11): 1157-1167 (in Chinese with English abstract). |
| [8] |
Fu, C. B., Ma, Z. G., 2023. Progress and Reflection on the Study of Interdecadal Changes in Dry and Wet Conditions in Global Arid and Semiarid Regions. Transactions of Atmospheric Sciences, 46(4): 481-490 (in Chinese with English abstract). |
| [9] |
Ge, J., Huang, X., Zan, B. L., et al., 2023. Local Surface Cooling from Afforestation Amplified by Lower Aerosol Pollution. Nature Geoscience, 16(9): 781-788. https://doi.org/10.1038/s41561⁃023⁃01251⁃x |
| [10] |
Guan, X. D., Huang, J. P., 2024. Constructing Semi⁃Arid Ecological Barriers to Prevent Desertification. The Innovation Geoscience, 2(2): 100067. https://doi.org/10.59717/j.xinn⁃geo.2024.100067 |
| [11] |
Guan, X. D., Shi, R., Kong, X. N., et al., 2018. An Overview of Researches on Land⁃Atmosphere Interaction over Semi⁃Arid Region under Global Changes. Advances in Earth Science, 33(10): 995-1004 (in Chinese with English abstract). |
| [12] |
Gu, T. H., Guan, X. D., Huang, J. P., et al., 2023. The Turning of Ecological Change in the Yellow River Basin. Hydrological Processes, 37(12): e15055. https://doi.org/10.1002/hyp.15055 |
| [13] |
Gu, X. L., Guo, E. L., Yin, S., et al., 2021. Assessment of the Cumulative and Lagging Effects of Drought on Vegetation Growth in Inner Mongolia. Acta Agrestia Sinica, 29(6): 1301-1310 (in Chinese with English abstract). |
| [14] |
Harris, I., Jones, P. D., Osborn, T. J., et al., 2014. Updated High⁃Resolution Grids of Monthly Climatic Observations⁃The CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642. https://doi.org/10.1002/joc.3711 |
| [15] |
Jiang, D. B., Wang, X. X., 2021. A Brief Interpretation of Drought Change from IPCC Sixth Assessment Report. Transactions of Atmospheric Sciences, 44(5): 650-653 (in Chinese with English abstract). |
| [16] |
Li, B., Su, H. B., Chen, F., et al., 2013. The Changing Characteristics of Drought in China from 1982 to 2005. Natural Hazards, 68(2): 723-743. https://doi.org/10.1007/s11069⁃013⁃0649⁃3 |
| [17] |
Liang, S. L., Chen, X. N., Chen, Y., et al., 2023. Updates on Global LAnd Surface Satellite (GLASS) Products Suite. National Remote Sensing Bulletin, 27(4): 831-856 (in Chinese with English abstract). |
| [18] |
Lu, J. T., Peng, J., Li, G. Y., et al., 2023. Assessment of Time⁃Lag and Cumulative Effects of Drought on Gross Primary Productivity of Grassland in Central Asia from 1982 to 2018. Acta Ecologica Sinica, 43(23): 9745-9757 (in Chinese with English abstract). |
| [19] |
McKee, T. B., Doesken, N. J., Kleist, J., 1993. The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, Anaheim. |
| [20] |
Palmer, W. C., 1965. Meteorological Drought. Office of Climatology Research Paper 45, Weather Bureau, Washington, D.C. |
| [21] |
Piao, S. L., Sitch, S., Ciais, P., et al., 2013. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to Trends. Global Change Biology, 19(7): 2117-2132. https://doi.org/10.1111/gcb.12187 |
| [22] |
Sun, B. F., Zhao, H., Wang, X. K., 2016. Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration. Chinese Geographical Science, 26(2): 270-282. https://doi.org/10.1007/s11769⁃016⁃0804⁃3 |
| [23] |
Teuling, A. J., Seneviratne, S. I., Stöckli, R., et al., 2010. Contrasting Response of European Forest and Grassland Energy Exchange to Heatwaves. Nature Geoscience, 3(10): 722-727. https://doi.org/10.1038/ngeo950 |
| [24] |
van der Schrier, G., Barichivich, J., Briffa, K. R., et al., 2013. A ScPDSI⁃Based Global Data Set of Dry and Wet Spells for 1901-2009. Journal of Geophysical Research: Atmospheres, 118(10): 4025-4048. https://doi.org/10.1002/jgrd.50355 |
| [25] |
Vicente⁃Serrano, S. M., Beguería, S., López⁃Moreno, J. I., 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7): 1696-1718. https://doi.org/10.1175/2009JCLI2909.1 |
| [26] |
von Buttlar, J., Zscheischler, J., Rammig, A., et al., 2018. Impacts of Droughts and Extreme⁃Temperature Events on Gross Primary Production and Ecosystem Respiration: A Systematic Assessment across Ecosystems and Climate Zones. Biogeosciences, 15(5): 1293-1318. https://doi.org/10.5194/bg⁃15⁃1293⁃2018 |
| [27] |
Wang, C. P., Huang, M. T., Zhai, P. M., 2022. New Progress and Enlightenment on Different Types of Drought Changes from IPCC Sixth Assessment Report. Acta Meteorologica Sinica, 80(1): 168-175 (in Chinese with English abstract). |
| [28] |
Wang, H. Y., He, B., Zhang, Y. F., et al., 2018. Response of Ecosystem Productivity to Dry/Wet Conditions Indicated by Different Drought Indices. Science of the Total Environment, 612: 347-357. https://doi.org/10.1016/j.scitotenv.2017.08.212 |
| [29] |
Wang, T. H., Wang, X. F., Zhang, S. L., et al., 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919 (in Chinese with English abstract). |
| [30] |
Wells, N., Goddard, S., Hayes, M. J., 2004. A Self⁃ Calibrating Palmer Drought Severity Index. Journal of Climate, 17(12): 2335-2351. https://doi.org/10.1175/1520⁃0442(2004)017<2335:ASPDSI>2.0.CO;2 |
| [31] |
Wu, X., Liu, H., Li, X., et al., 2018. Differentiating Drought Legacy Effects on Vegetation Growth over the Temperate Northern Hemisphere. Global Change Biology, 24: 504-516. https://doi/10.1111/gcb.13920 |
| [32] |
Xu, H. J., Wang, X. P., 2016. Effects of Altered Precipitation Regimes on Plant Productivity in the Arid Region of Northern China. Ecological Informatics, 31: 137-146. https://doi.org/10.1016/j.ecoinf.2015.12.003 |
| [33] |
Xu, M., Guan, Z. Y., Cai, Q., 2020. Spatial and Temporal Evolution Features of Cooling Extremes in China during Winter Half Year from 1960 to 2015. Journal of the Meteorological Sciences, 40(6): 733-743 (in Chinese with English abstract). |
| [34] |
Yuan, W. P., Zheng, Y., Piao, S. L., et al., 2019. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Science Advances, 5(8): eaax1396. https://doi.org/10.1126/sciadv.aax1396 |
| [35] |
Yuan, X., Wang, Y. M., Zhou, S. Y., et al., 2024. Multiscale Causes of the 2022 Yangtze Mega⁃Flash Drought under Climate Change. Scientia Sinica Terrae, 54(8): 2690-2702 (in Chinese with English abstract). |
| [36] |
Yue, S. R., Wang, L. C., Cao, Q., et al., 2024. Vegetation Dynamics and Potential Factors Driving Mechanisms in the Tarim River Basin. Earth Science, 49(9): 3399-3410 (in Chinese with English abstract). |
| [37] |
Zhang, S. Z., Zhu, X. F., Liu, T. T., et al., 2022. Response of Gross Primary Production to Drought under Climate Change in Different Vegetation Regions of China. Acta Ecologica Sinica, 42(8): 3429-3440 (in Chinese with English abstract). |
| [38] |
Zhao, H. C., 2020. Study on the Temporal and Spatial Changes of Different Types of Drought and Their Relationship (Dissertation). Northwest A&F University, Xianyang, 56-72 (in Chinese with English abstract). |
| [39] |
Zheng, Y., Shen, R. Q., Wang, Y. W., et al., 2020. Improved Estimate of Global Gross Primary Production for Reproducing Its Long⁃Term Variation, 1982-2017. Earth System Science Data, 12(4): 2725-2746. https://doi.org/10.5194/essd⁃12⁃2725⁃2020 |
| [40] |
Zou, H., Gao, G. Y., Fu, B. J., 2016. The Relationship between Grassland Ecosystem and Soil Water in Arid and Semiarid Areas: A Review. Acta Ecologica Sinica, 36(11): 3127-3136 (in Chinese with English abstract). |
国家自然科学基金面上项目(42075114)
江苏高校优势学科建设项目(140119001)
徐州市重点研发计划(现代农业)面上项目(KC21132)
/
| 〈 |
|
〉 |