东亚陆缘盆地新生代沉积通量演化及控制因素

王海芹 ,  丁巍伟 ,  王菲

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3559 -3580.

PDF (6732KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3559 -3580. DOI: 10.3799/dqkx.2025.099

东亚陆缘盆地新生代沉积通量演化及控制因素

作者信息 +

Evolution and Controlling Factors of Sedimentary Flux of East Asian Continental Margin since the Cenozoic

Author information +
文章历史 +
PDF (6892K)

摘要

东亚大陆边缘位于太平洋板块和欧亚板块的汇聚碰撞边界,是全球构造、气候最活跃的地区,也是新生代以来的沉积“源‒汇”过程的重要载体,但不同纬度海盆沉积动力过程和关键控制因素仍不明确.本文计算并统计了高纬度(鄂霍次克海)、中纬度(日本海、东海)和低纬度(南海)代表性海盆的新生代沉积通量.结果表明东亚陆缘新生代沉积通量演化呈现显著的纬度分异特征:中‒低纬度海盆(南海、东海、日本海)受构造‒季风‒河流耦合控制,晚中新世(11.6~5.3 Ma)因青藏高原隆升引发河流重组及受东亚冬季风控制,沉积通量较中中新世时期减少了约1/3;上新世(5.3~0 Ma)夏季风增强及台湾岛隆升使其沉积通量较晚中新世增加2~3倍,日本海则主要受控于季风及局部构造.高纬度鄂霍次克海受构造‒冰川协同作用,中‒晚中新世(16.0~5.3 Ma)全球降温事件导致通量较早中新世减少了约60%,上新世(5.3~2.5 Ma)沉积通量因黑龙江(阿穆尔河)流域增大及萨哈林岛隆升而增加约2倍.

Abstract

The East Asian continental margin located at the convergent and collisional boundary of the Pacific Plate and the Eurasian Plate, is not only the most tectonically and climatically active region in the world, but also an important place of the sedimentary “source to sink” process since the Cenozoic, However, the sedimentary dynamic processes and key controlling factors of basins at different latitudes remain unclear. This study calculates and statistically analyzes Cenozoic sedimentary flux in high-latitude (Okhotsk Sea), mid-latitude (Japan Sea, East China Sea), and low-latitude (South China Sea) basins. It is found that the evolution of sedimentary flux along the East Asian continental margin shows pronounced latitudinal differentiation: Mid- to Low-latitude basins (South China Sea, East China Sea, and Japan Sea) are primarily influenced by the coupling of tectonics, East Asian monsoon, and river systems. During the Late Miocene (11.6-5.3 Ma), the uplift of the Tibetan Plateau resulted in river reorganization and the intensification of the East Asian winter monsoon, reducing sedimentary flux by approximately 1/3 compared to the Middle Miocene. Since the Pliocene (5.3-0 Ma), the strengthening of the East Asian summer monsoon and the uplift of Taiwan Island increased it by 2 to 3 times compared to the Late Miocene, while the Japan Sea was mainly controlled by monsoon and local tectonics. High latitudes basin (Okhotsk Sea) is subject to the synergy of tectonics and glaciation. During the Middle to Late Miocene (16.0-5.3 Ma), global cooling events caused a decline in sedimentary flux by approximately 60% compared to the Early Miocene. Since the Pliocene (5.3-2.5 Ma), the expansion of the Heilongjiang River (Amur River) basin and the uplift of Sakhalin Island have led to an approximately 2-fold increase in sedimentary flux.

Graphical abstract

关键词

东亚陆缘盆地 / 新生代 / 沉积通量 / 控制因素 / 沉积学 / 海洋地质.

Key words

East Asian continental margin / Cenozoic / sedimentary flux / controlling factor / sedimentology / marine geology

引用本文

引用格式 ▾
王海芹,丁巍伟,王菲. 东亚陆缘盆地新生代沉积通量演化及控制因素[J]. 地球科学, 2025, 50(09): 3559-3580 DOI:10.3799/dqkx.2025.099

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

大陆边缘是大陆物质输送入海的汇入地,直接记录了陆源物质入海的源‒汇过程,也是新生代大陆构造隆升、风化剥蚀、季风演化与大河发育历史的理想载体(Wang et al., 2004;杨守业, 2006;郑洪波等, 2008).东亚陆缘位于太平洋板块和欧亚板块的汇聚、碰撞边界,中新生代以来东亚陆缘的构造、岩浆活动、沉积盆地演化、海啸地震的发生等都与太平洋板块俯冲密切相关,不仅是全球少有的极具研究价值的地区,更包含了若干地球科学前沿的重大理论问题,尤其是该区域汇集了地球上75%的边缘海,是全球沟弧盆体系最发育的地区(石学法等,2021).这些边缘海盆地跨越了122个纬度,构造复杂,类型多样,既有位于高纬、长时间被海冰覆盖的弧后盆地典型——鄂霍茨克海,也有位于中纬、具有宽阔大陆架的东海,还有位于低纬、经历了海底扩张‒俯冲消减的南海(Sakamoto et al., 2005Liu et al., 2020图1).新生代以来,青藏高原的隆升奠定了中国西高东低的地理格局,陆上河流系统携带大量陆源物质汇入东亚陆缘盆地,包括发源于青藏高原的世界级大陆型河流大河如长江、黄河、湄公河(我国境内称为澜沧江)等,贡献了全球约三分之二的入海物质,不仅在东亚陆缘形成了重要的沉积体系,而且对全球海洋物质组成也有重要影响(Syvitski and Kettner, 2011).构造活动和纬度尺度差异,使得东亚陆缘盆地不仅记录了陆源物质入海的源‒汇过程,也是新生代大陆隆升、风化剥蚀、季风演化和大河发育历史等动态变化过程的理想载体(McCann and Saintot, 2003Gharsalli et al., 2013Kim et al., 2020).

对东亚陆缘盆地沉积过程的研究一直是国际学术界的热点,尤其是近十几年来,国际大洋发现计划(IODP)以及国际合作调查航次在上述代表性边缘海盆地进行了一系列的国际合作,比如在南海的IODP349、367和368钻探航次、东海冲绳海槽的ODP 195钻探航次,日本海的ODP127和128钻探航次,以及在鄂霍茨克海的俄德KOMEX和KAKMAR计划航次等.自2015年以来,中国学者开展了亚洲大陆边缘不同纬度沉积物“源‒汇”过程及其控制因素的研究,对亚洲边缘海的沉积物类型进行了汇编,建立了第四纪以来亚洲大陆边缘系统的沉积学模式(石学法等,2021).以上研究或者集中在某边缘海区域(Wu et al., 2018,2020Wang and Ding, 2023),或者只关注短时间尺度的沉积动力学过程(Qiao et al., 2017),尤其是对东亚边缘海陆缘硅酸盐风化记录的研究主要集中在中低纬地区(Clift and Jonell, 2021Li et al., 2022),而忽略了中高纬度地区的风化记录.新生代以来的东亚陆缘不同纬度百万年构造尺度的沉积动力过程是否有共性和差异性?受什么控制因素主导?这些问题至今没有明确的结论.

前人21世纪初就通过边缘海盆地的沉积通量对亚洲大陆剥蚀演化进行了研究(Clift, 2006Clift et al., 2014),近十几年来该方法得到了不断地发展,被广泛应用于亚洲边缘海盆研究中(如南海、鄂霍茨克海等)(Nicholson et al., 2016Wu et al., 2018,2020; Wang and Ding, 2023).该沉积通量的计算方法可以进行百万年时间尺度的沉积输送和堆积过程的定量化研究,本文计算了东亚陆缘不同纬度的海盆在不同地质时期的沉积通量,分析沉积通量时空变化的异同点,探究这些变化与区域构造作用、东亚季风演变及海平面变化等控制因素之间的联系,系统地建立起整个东亚陆缘地质事件、河流发育及气候事件之间的联系,有助于增强对东亚陆缘“源‒汇”过程的理解.

1 东亚陆缘区域地质背景

1.1 东亚陆缘盆地的形成与演化

新生代期间,东亚陆缘主要受太平洋板块俯 冲‒后撤作用的影响,发育了一系列的沟弧盆体系,包括千岛盆地、日本海盆、冲绳海槽等均开始发生弧后海底扩张.如Xu et al.(2016)通过磁异常识别、陆上和海上探井、ODP钻探、同位素测年和年代学研究,认为鄂霍茨克海在古新世开始发生陆缘张裂活动,持续至渐新世左右,在早渐新世由于持续的弧后扩张作用,千岛盆地开始打开(Weaver et al., 2004Prokudin, 2015).IODP346、ODP195钻探计划结果表明日本海在早渐新世开始打开,之后经历了拉张‒弧后伸展的构造演化,晚中新世伊豆‒小笠原向北碰撞,造成盆地的关闭(Sagawa et al., 2018).

东海陆架盆地的形成受太平洋板块俯冲后撤的影响,自新生代以来发生了阶段性的拉张、挤压作用,在渐新世进入以挤压拗陷作用为主的演化阶段,中新世至今,裂陷中心迁移到陆架外缘隆起,断陷向东迁移至冲绳海槽地区,东海陆架地区整体进入沉降阶段(Cukur et al., 2011Yang et al., 2011;索艳慧等,2012;祁江豪等,2020).

南海自晚白垩世以来主要经历了陆缘拉张破裂→海底扩张→构造沉降接受沉积的构造沉积演化过程.南海的南、北两侧陆缘在多期裂谷作用下发育了一系列的断陷盆地,最终在早渐新世开始发生海底扩张(Sun et al., 2009Franke et al., 2014).IODP 349、367和368大洋钻探航次相关研究表明,南海海盆发生海底扩张的时间在 ~33 Ma,~16 Ma南海全海盆扩张终止(Li et al., 2015Ding et al., 2018Sun et al., 2019).中中新世以后,南海海盆沿着马尼拉海沟向其东部菲律宾海板块俯冲形成吕宋岛弧,在~9 Ma引发了吕宋岛弧与欧亚板块的碰撞,以及在~6.5 Ma开始的台湾岛造山运动(Sibuet and Hsu, 2004Liu et al., 2016).随后南海区域总体上以沉降状态为主,南海海盆半封闭的边缘海沉积环境逐渐形成.

1.2 气候变化

新生代以来,全球的气候变化发生了4次标志性事件,17~15 Ma中中新世气候适宜期(You et al., 2009)、14~13 Ma中中新世降温事件(Herbert et al.,2016He et al., 2021),晚中新世时期(7.0~5.4 Ma)全球变冷事件(Matsuzaki et al., 2020Zhai et al., 2021),2.7 Ma北极冰盖形成冰期‒间冰期旋回气候(Zachos et al., 2001),这都对东亚陆缘的沉积演化产生了重要影响.但在中‒低纬度,东亚陆缘盆地更多受到东亚季风气候的主导.东亚季风起源于始新世,最早出现在低纬度地区,标志是东亚沿海从低纬度到高纬度地区出现以风向季节性稳定改变和丰沛的夏季降雨为特征的季风气候(林旭等,2024).东亚季风的影响范围在温带和热带之间变化(Wu et al., 2022),但高纬度区域基本不受东亚季风的影响或影响较小(Fang et al., 2021).

1.3 河流水系演化

东亚陆缘的陆源沉积物通过不同规模的河流水系进入海盆,汇入东海的大型河流包括长江、黄河,汇入南海的包括湄公河、红河、珠江等大河水系,汇入鄂霍茨克海的有黑龙江(阿穆尔河)(位置如图1所示),日本海无大陆性河流的汇入.除了大陆性河流汇入,还包含了华南陆缘及岛屿(如台湾岛、琉球群岛、日本群岛、千岛岛弧等)季节性山溪性河流的汇入.

长江东西贯通的年龄一直备受争议,包括始新世(Richardson et al., 2010)、早中新世(Zhang et al., 2022)、渐新世/中新世(Zheng et al., 2011,2013)、晚中新世(Fu et al., 2021)、中新世以后(Sun et al., 2021)和早更新世(Li et al., 2001)等多种观点.东海陆架北部及西湖凹陷的中渐新世地层年龄谱表明存在汇入的大型河流(Wang et al., 2018Zhang et al., 2021a),这可能也支持长江或类似河流在渐新世或更早时期存在的观点.

黄河作为全球第五长的河流,其关键发育阶段在始新世、中新世、上新世至更新世断断续续地发生,但其成因尚未得到全面研究(Liu, 2020).黄河流域的变化主要受青藏高原隆升和太平洋板块向亚洲大陆俯冲的影响(Kong et al., 2014).中新世中期,黄河上、中、下游呈现断流状态(林旭等,2023,2024).早、中更新世,青藏高原的剥露和东亚夏季风的高幅度波动推动了现今黄河中上游多层次以砾石为主的河流阶地发育;早更新世,黄河实现了现今上、中、下游的互联互通(Wang et al., 2018Lin et al., 2025).

红河是南海北部陆架盆地的主要汇入河流,河内盆地和琼东南盆地的碎屑锆石年龄谱及Nd同位素特征显示,晚渐新世‒早中新世时期,红河的流域范围已经接近现今规模(Hoang et al., 2009Lei et al., 2019; 张增杰等,2025).Clark et al.(2004)提出古新世至始新世晚期,存在一条源于青藏高原的大型单一河流“古红河”,不过目前对于“古红河”是否存在仍有争论(Cui et al., 2024).

湄公河水系的上游发生过重组,在晚中新世基本形成现代水系规模(Miao et al., 2022),南海西南次海盆U1433的同位素分析表明现代湄公河在~8 Ma就已经成为南海西南次海盆的主要沉积物输送通道(Liu et al., 2017).

珠江则是经历了渐新世‒中新世扩张过程,从小型河流逐步形成南海北部陆缘的大型水系(Cao et al., 2018),南海北部U1501井的地球化学证据表明珠江在约30 Ma前形成现代规模的大致格局(Jin et al., 2022),在华南内陆也存在明显的侵蚀扩张痕迹(Ma et al., 2019; 邵磊等,2020).

黑龙江(阿穆尔河)是进入鄂霍茨克海的最大河流,年输沙量(52×107 t/a,Milliman and Farnsworth., 2011)是西伯利亚所有其他河流的2~3倍.黑龙江(阿穆尔河)发源于蒙古高原,在21 Ma以来就向鄂霍茨克海贡献沉积物(Nicholson et al., 2016),Sorokin and Artyomenko(2003)的模型恢复表明,在上新世以前,黑龙江(阿穆尔河)的上游主要流向松辽盆地,上新世以来中游的Zeya⁃Bureya盆地发生了盆地反转,其流域面积也增大为原先的4倍,汇入鄂霍茨克海.

此外,还有如钱塘江、瓯江、闽江以及台湾岛内河流等众多向东汇入东海、南海的中小型山溪性河流,向海洋输送的泥沙量不容忽视.钱塘江整体水系形成于始‒渐新世,在渐新世至中新世,就已经东流入海,第四纪气候变动频繁,河道随海水周期性进退而发生变动(徐柔远, 1995).闽江在第四纪早期就已经形成,径流量随季节变化较大,悬移质输沙量年均为745.5×104 t(吴立成, 1990; 刘苍字等, 2001).台湾岛处于欧亚板块与菲律宾板块的碰撞地带,在6.5 Ma隆升速度加快,随后遭受风化剥蚀,在降雨充沛、台风及地震活跃的影响下,台湾岛河流每年可以携带18~38 Mt沉积物进入南海、东海及菲律宾海(Liu et al., 2016),有研究表明台湾岛河流的沉积物剥蚀量高达2×104 t·km-2·a-1,沉积物输出量占全球的1.9%(Dadson et al., 2003Kao et al., 2008Liu et al., 2013).

2 东亚陆缘边缘海盆沉积通量计算结果

要对该区域进行沉积通量的探讨,需尽量保证沉积通量计算方法的一致性,文中所使用的沉积通量计算方法主要基于Einsels(1992)对沉积通量的经典定义,即在一定时间内,单位面积上所沉积的固体物质总量,而近几十年前人基于边缘海盆中的多道地震测井资料用沉积通量的方法来对大陆的剥蚀作用来进行研究,计算公式如下Clift(2006)

R=V/△t

其中,△R是沉积通量,单位为km3/Ma;V为单位面积的沉积物体积,单位为m3或km3; △t为持续时间,单位为Ma.

本文中的鄂霍茨克海的北萨哈林盆地(Nicholson et al., 2016)、东海冲绳海槽、日本郁陵海盆、南海海盆沉积通量均采用这一计算方法,以上结果具有可对比性,可建立区域盆地沉积物充填过程的联系.但东亚陆缘盆地的研究程度不同,鄂霍茨克海千岛盆地和东海陆架盆地的沉积通量研究相对薄弱,但为了更好进行区域的比对,采用了东海陆架盆地北部(Cukur et al., 2011)和千岛盆地(Prokudin, 2015)多道地震数据中沉积堆积速率的变化规律.

2.1 南海

作为西太平洋最大的边缘海之一,南海自新生代发生大陆裂离‒海底扩张以来,成为亚洲陆缘区沉积“源‒汇”过程研究的关键场所.每年有超过7亿吨的河流沉积物进入南海,这其中包括大型的珠江水系、红河水系和湄公河水系,也包含输沙量较高的季节性小型山脉河流(如台湾岛西南部的浊水溪、高屏溪等),使得南海虽然面积只占全球海域面积的0.9%,但其堆积的沉积物却占了全球海洋沉积物总量的5.5%(Wang and Li, 2009Liu and Stattegger, 2014Liu et al., 2016).自新生代开始裂离成盆以来,南海成为亚洲陆缘沉积“源‒汇”过程研究的关键场所.

要开展南海全区域沉积通量研究,需对陆缘盆地与深水盆地的整个沉积负载区进行计算.基于丰富的多道地震数据和超过2 000多口工业钻井数据(Wang et al., 2019),前人在南海陆缘区域沉积通量的研究中已经获得了丰富的成果.而在南海海盆区,20世纪90年代以来,我国开始对南海海盆开展了多次海上调查工作,采集了大量包括多道地震数据和深海样品在内的地质地球物理综合数据,为南海海盆的研究提供了基础(赵泉鸿和汪品先,1999).自2014年以来,国际大洋发现计划(International Ocean Discovery Program,简称IODP)先后在南海海盆共实施了三个航次的钻探工作(349、367、368/368X航次),使得在海盆区建立沉积地层格架成为可能.

2.1.1 南海陆缘盆地沉积通量

南海陆缘盆地较多,分布范围也较大,主要包括位于北部陆缘的莺歌海盆地、琼东南盆地(Clift and Sun, 2006Yan et al., 2011Lei et al., 2015)、珠江口盆地(Clift, 2006)、白云凹陷(Xie et al., 2013)、台西南盆地;南部陆缘由西向东有湄公河陆架盆地(Clift, 2006)、湄公河陆坡盆地(Xie et al., 2013)、南沙地区诸盆地和北巴拉望区诸盆地(黄维和汪品先,2006).

前人在南海陆缘盆地进行了大量沉积通量相关研究(Clift, 2006Xie et al., 2013; 黄维和汪品先,2006),笔者对以上陆缘盆地研究进行了统计和整理(图2).结果表明:渐新世(33~23 Ma),南海海盆开始拉张,南海绝大部分陆缘盆地都处于海相沉积环境.在北部陆缘,珠江和韩江水系将陆源物质输送至陆架的河口区,导致珠江口盆地沉积物增加(Clift, 2006Xie et al., 2013),在早中新世时期珠江逐渐控制了包括珠江口盆地在内的南海北部陆缘盆地的沉积物供应.

早中新世(23~16 Ma),扩张海脊向南跃迁,南海西南次海盆开始发生海底扩张.在这一阶段,南海陆缘大部分沉积盆地的沉积通量显著增加,包括南海北部陆缘的莺歌海盆地、珠江口盆地、北部大陆边缘的台西南盆地和南部陆缘的湄公河大陆架与湄公河盆地.

中中新世时期(16.0~11.6 Ma),南海海底扩张停止,南海海盆格局基本形成.南海陆缘盆地的沉积量均表现为持续增加,这可能是由于西藏高原的隆起事件和东亚夏季季风的加强,以及相关块体(包括印度支那和其他块体)向东南的挤压,导致剥蚀作用的加强而向海洋大量输入陆源物质.

晚中新世(11.6~5.3 Ma),陆源盆地的沉积通量有显著下降,这可能与亚洲冬季季风盛行相关,其导致的寒冷干燥的气候削弱了陆地剥蚀作用,通过陆上河流输送的沉积物减少,导致大陆架沉积物预算偏低(Clift, 2006Wan et al., 2006,2007).

上新世(5.3~1.8 Ma),东亚夏季季风再次盛行,气候转为温暖湿润(Wan et al., 2006Clift et al., 2014),这加剧了陆地的剥蚀,促进了沉积物通过河流系统进入海洋,导致莺歌海盆地、琼东南盆地、珠江口盆地和台西南盆地的沉积量增加.但在部分区域(比如中建南盆地、湄公河陆坡盆地和南沙区域),由于该时期海平面较高,陆源沉积物会优先堆积在河口陆架区,而导致这些区域的沉积通量发生降低.

更新世至今(1.8~0 Ma),各次流域的沉积物总量均有所增加,但幅度并不一致.

2.1.2 南海海盆的沉积通量

南海海盆可分为三个次海盆——西北次海盆、西南次海盆和东部次海盆.Wu et al.(2018,2020)Wang and Ding(2023)基于南海所获取的多道地震数据及IODP获取的钻井数据进行地质年代标定与沉积单元划分,基于覆盖海盆的多道地震剖面进行地质解释,获取了三个海盆不同地质时期的沉积通量.沉积通量计算结果表明,南海海盆整体和东部次海盆的沉积通量呈现持续增加的趋势,不同时期的增长速率并不一致.南海自渐新世扩张以来,海盆区整体沉积通量比较低(4.4×103 km3/Ma),局部的沉积中心均紧邻陆架区的构造高地,推测与构造高地的剥蚀作用相关.

早中新世时期,南海陆缘区的绝大多数沉积盆地的沉积通量皆大幅度增加(增量超过30.0×103 km3/Ma).陆源沉积物优先堆积于大陆边缘盆地中,输入海盆的沉积物主要堆积在海盆边缘靠近陆坡坡脚.

中中新世时期,青藏高原的隆升剥蚀作用以及东亚夏季风的增强,使得大量陆源沉积物通过该时期开始广泛发育的峡谷系统输入南海海盆,沉积通量再次增加(13.5×103 km3/Ma);晚中新世期间,盛行的亚洲冬季季风以及干旱的气候导致了南海大部分陆缘盆地的沉积通量都表现为明显的下降,而海盆区沉积通量则进一步增加至17.9×103 km3/Ma.这种截然相反的趋势可能与陆坡区海底峡谷的形成(如中央峡谷)、多期次海退、局部隆升剥蚀(越南东部、东沙隆起)三个因素的叠加影响有关.

上新世时期,东亚夏季风再次盛行,气候再次转变为温暖潮湿,加强了陆地上的剥蚀作用,经由陆上水系搬运的沉积物输入增大,南海海盆的沉积通量也增加至21.3×103 km3/Ma,尤其是南海东北部形成了与台湾岛隆升相关的巨大沉积中心,持续的隆升造山运动导致了极大的风化剥蚀,在海盆内形成厚度超过1 000 m的扇形堆积体.

更新世至今,南海海盆和南海陆缘盆地的沉积通量同时大幅度增加,这与全球该时期由于间冰期夏季风的增强以及冰期‒间冰期气候变化导致的沉积通量普遍增加的发现相符.

南海东部次海盆沉积通量表现为持续的增加,而西北与西南次海盆沉积通量的变化趋势均为先增加‒减少‒再增加(减少量分别为1.1×103 km3/Ma和0.3×103 km3/Ma).西北和西南次海盆沉积通量下降事件发生的时期和原因并不相同:①在晚中新世期间,西南次海盆沉积通量的降低,可能与湄公河陆坡盆地的沉积捕获有关;②上新世期间,西北次海盆沉积通量降低,主要与该阶段南海处于高海平面期,陆源沉积物会优先堆积在河口陆架区,西侧中央峡谷发生退缩相关.

综合海盆沉积通量结果,结合前人对南海周缘沉积盆地沉积通量研究工作的总结,笔者认为海盆的沉降通量变化受到大型构造事件(青藏高原隆升‒剥蚀作用)、东亚季风演化、周缘水系演化(珠江、湄公河等)、陆缘海底峡谷发育和相对海平面变化等因素的叠加控制.

2.2 东海

2.2.1 东海陆架盆地沉积通量

东海陆架是中国边缘海最宽阔的陆架之一,黄河和长江等大江大河及华东的山溪性河流(如钱塘江、椒江、闽江及瓯江等)在地质历史时期中向其中输送了大量沉积物.东海陆架中的沉积物在构造、复杂的水动力、季风系统及海平面变化的作用下,经历了复杂的沉积演化过程(秦蕴珊等,1987;石学法,2021;湛君明等,2024).前人主要对东海陆架盆地的沉积速率进行了计算和分析,但是对沉积通量的系统性计算工作尚未进行.

Cukur et al.(2011)基于东海北部陆架盆地(长江凹陷、福江凹陷、浙东凹陷)的多道地震数据进行了沉积堆积速率分析,划分出四个时期,分别为古新世‒始新世(65.0~33.9 Ma)、渐新世‒早中新世(33.9~20.0 Ma)、中新世(20.0~5.3 Ma)、上新世以来(5.3~0 Ma).

在古新世‒始新世(65.0~33.9 Ma)时期,长江凹陷的堆积速率为130 m/Ma,福江凹陷和浙东凹陷沉积速率相近,70~80 m/Ma,平均堆积速率为93 m/Ma.

渐新世‒早中新世(33.9~20.0 Ma),盆地北部沉积堆积速率增大,长江凹陷增加到165 m/Ma,浙东凹陷也增加到120 m/Ma,但北部的福江凹陷减少到40 m/Ma,平均堆积速率增加到108 m/Ma,沉积环境变为河流至湖泊环境(Kwon and Boggs, 2002).

中新世(20.0~5.3 Ma),长江凹陷和浙东凹陷沉积堆积速率发生锐减,长江凹陷减少至55 m/Ma,浙东凹陷减少到90 m/Ma,福江凹陷则小幅度地增加到60 m/Ma,平均沉积堆积速率减少了约1/3,为68 m/Ma,指示该时期地层处于浅海环境,表明海平面升高.

上新世以来(5.3~0 Ma),长江凹陷沉积堆积速率增加到135 m/Ma,最南端的浙东凹陷增加到最大值175 m/Ma,福江凹陷也增加到98 m/Ma,平均沉积速率增长到最大值136 m/Ma,该时期地层代表了浅海和陆架环境,说明了海平面呈现持续升高的特征.

除东海陆架盆地的北部凹陷外,还有西湖凹陷、钱塘凹陷、丽水‒椒江凹陷等记录了东海陆架的沉积过程,但这些区域均缺乏与沉积通量相关的研究.

2.2.2 冲绳海槽

冲绳海槽位于东海的最东端,是由菲律宾海板块向欧亚板块俯冲形成的弧后盆地(Letouzey and Kimura, 1985),代表了东海最深的区域,接收来自华南大陆、琉球岛弧、朝鲜半岛和台湾岛丰富的沉积物(Kimura, 1985Dou et al., 2012Gungor et al., 2012Li et al., 2019).自新近纪扩张以来,冲绳海槽作为青藏高原和琉球岛弧之间最大的负地形构造单元,是东亚大陆陆源物质向海输运的接收末端(Kimura, 1985Letouzey and Kimura, 1985).

基于冲绳海槽45条多道地震测线,笔者计算了不同地质历史时期的沉积通量.沉积通量的结果表明,自中中新世以来冲绳海槽沉积通量总体呈现增长趋势,但海槽各段的沉积通量变化呈现出明显差异.

中‒晚中新世时期,冲绳海槽初期扩张(Kimura,1985),沉积容纳空间有限,东亚冬季风限制了输送的沉积物(马小林和田军,2015),沉积通量较低,在中北段形成北宽南窄的沉积带,沉积中心集中在北段的西侧陆坡附近.

上新世时期,受东亚夏季风的影响(Gai et al., 2020),侵蚀增强,长江及东海周缘的山溪河流的沉积物输入增大,沉积通量增加,海槽向中段扩张,沉积范围扩大,沉积中心向南移动至中段;早更新世时期,第四纪冰期‒间冰期气候频繁变化(Zachos et al., 2001),华南陆缘的山溪性河流发育成熟,而隆升的台湾岛也开始向海槽南段输送沉积物(黄奇瑜,2017),海槽整体沉积通量快速增加,海槽南段开始扩张,沉积中心明显移动到海槽南段轴部.

中更新世以来,虽然由于高海平面事件(武法东等,1998),长江直接向深海输送的沉积减少,但台湾岛隆升出露海面并达到面积最大,山溪性河流系统发育,向海槽输送沉积物增加,沉积通量达到最大值,沉积中心主要位于南段,北段沉积厚度及沉积范围均缩减.

2.3 日本海盆

日本海处于东亚陆缘海的中段,与北太平洋、鄂霍茨克海和东海相连,属于东亚陆缘中‒高纬度海域,也是封闭程度最高的一个边缘海.日本海自渐新世多次扩张形成了三个深海盆地:日本海盆、大和盆地(Yamato)、日本海郁岭盆地(Ulleung basins,也称对马海盆;Jolivet, 1992Lee et al., 2001).

国际钻探计划IODP346、ODP195都在日本海开展了丰富的钻探工作(Tada et al., 2015Sagawa et al., 2018),对三个海盆钻井的沉积速率进行了统计,发现不同深海盆地的沉积速率相差较大(如图3蓝色曲线所示),其中日本海盆中部的沉积速率为30~82 m/Ma,大和海盆沉积速率约为 80 m/Ma,郁陵海盆的沉积速率约为40 m/Ma(Tada et al., 2015;程宇龙和万世明,2023).但钻井沉积速率仅反映局部次级盆地特征,缺乏日本海全盆覆盖数据,且钻井岩心所包含的时间尺度较短.

早期通过郁陵海盆的多道地震资料,Lee et al.(2001)对识别的新生代沉积‒构造关系进行了研究,结果表明在晚中新世早期(12.5~ 10.8 Ma),沉积物堆积速度要比其他时代高出一个数量级(图3黄色),认为与盆地南缘的最大隆升速度吻合,而这也与弧后闭合的开始时间相同;晚中新世以来的堆积速度降低与南缘构造隆起的停止有关.但由于早期数据资料的限制,对于堆积速率的规律及控制因素讨论仍然存在局限性.

笔者收集了前人发表的郁岭盆地的地震测线(如Kim et al., 2020),并计算了沉积通量、绘制了沉积厚度图(图4),结果表明,沉积通量的演化历史主要分为四个阶段.

早中新世(23.0~17.5 Ma),沉积通量达到峰值,沉积中心在北部且范围大,该阶段裂谷期火山活动活跃,提供了火山基岩和熔岩流等物源.

早中新世晚期至中中新世(17.5~12.5 Ma),沉积通量减少,沉积中心在南部和东北部,南部最厚,西部和西北部最薄.由弧后拉张早期链状火山活动造成的火山挤压伴随深海和浊积沉积,且有两次火山喷发产生火山碎屑沉积输入,火山活动持续影响沉积模式.Song et al.(2024)对郁陵海盆西南位置的地震剖面沉积层进行了沉积物供应的定量化,也得到14~6 Ma沉积通量降低的趋势.

中中新世至晚中新世(12.5~5.5 Ma),沉积通量减至最小,沉积中心位于南部,因盆地挤压活动占主导,南部陆架隆起致侵蚀/剥蚀增强,大量沉积物通过块体搬运沉积至海盆.

上新世至今(5.5~0 Ma),沉积通量小幅增长,沉积中心在南部且向北推进,虽构造应力变弱,但海平面变化和挤压构造活动仍造成物质搬运,在南部盆地边缘形成堆积体,且在第四纪受海平面变化影响,低海平面时盆地边缘有块体搬运过程,高海平面时以远洋沉积为主,块体搬运沉积在南部斜坡也持续产生堆积体.

2.4 鄂霍茨克海

鄂霍茨克海(Sea of Okhotsk)位于东亚陆缘的东北部,处于北半球中高纬度地区具有最大的海冰覆盖面积,每年海冰覆盖时间长,从末次冰期以来一直受到季节性海冰的影响(Sakamoto et al., 2005,2006Gorbarenko et al., 2020),河流输入的沉积范围有限,因此对地层年代的确定存在困难,该区域的海盆沉积研究程度较低(Liu et al., 2006; 石学法等, 2011).目前对其沉积通量开展的相关研究主要集中在两个盆地,北萨哈林盆地(North Sakhalin basin)和千岛盆地(Kurile basin).鄂霍茨克海表层沉积物轻重矿物、黏土矿物和矿物化学等多指标研究表明,现代鄂霍茨克海沉积物源主要有萨哈林岛、黑龙江(阿穆尔河)、勘察加半岛、千岛群岛和北部鄂霍次克‒楚科奇火山带风化产物及现代火山喷发产物等(Wang et al., 2021).

2.4.1 北萨哈林盆地沉积通量

100 Ma年前鄂霍茨克海的海洋岩石圈俯冲于萨哈林岛之下,将萨哈林岛与欧亚大陆分开,大约20~5 Ma,鄂霍茨克海岩石圈的俯冲明显停止,萨哈林岛‒北海道也被认为是鄂霍茨克海板块与欧亚板块的碰撞剪切带(Zhao et al., 2018).萨哈林岛陆缘盆地也被认为自早中新世以来一直是黑龙江(阿穆尔河)沉积的主要地点.

Nicholson et al.(2016)对该盆地新近纪以来的沉积通量进行了研究,将其分为五个阶段:

早中新世(21.0~16.5 Ma),喜马拉雅山的隆升速度加快(Godin et al., 2006),全球气温较高,在中新世中期气候最佳期达到峰值(17~15 Ma; Zachos et al., 2001),剥蚀速率加快,沉积通量为26.9×103 km3/Ma.

中中新世时期(16.5~10.4 Ma),15 Ma之后,黑龙江(阿穆尔河)中游的中阿穆尔盆地扩张,沉积物大量堆积,向海输入的沉积物减少,且全球气温下降,直到10 Ma南极冰盖形成,沉积通量快速降低了2/3,至9.4×103 km3/Ma,这与黑龙江(阿穆尔河)的最低沉积堆积速率相吻合.

晚中新世时期(10.4~5.3 Ma),发生了全球变冷事件(He et al.,2021),对北半球高纬度地区的影响较大,蒙古高原的构造演化对黑龙江(阿穆尔河)的河流系统演化有着显著的影响(Zhang et al., 2017).但黑龙江(阿穆尔河)三角洲的沉积速率大幅增加,因此流入沉积盆地的沉积通量增加至18.3×103 km3/Ma,这与季风强度下降导致亚洲其他地区沉积速率发生降低不同(Clift,2006Clift et al., 2014).

上新世时期(5.3~2.5 Ma),在这个时期黑龙江(阿穆尔河)上游的戈壁‒阿尔泰山脉隆起,且Sorokin and Artyomenko(2003)的河流模型表明黑龙江(阿穆尔河)上新世以来发生了变化,上游流域发生了改道,最终汇入到鄂霍茨克海中,但大部分被侵蚀的沉积物可能被困在山脉前沿的内陆盆地中(Vassallo et al., 2007),该阶段沉积通量增加到22.7×103 km3/Ma,增加速度稍缓.

更新世以来(2.5~0 Ma),沉积通量增加到峰值,为44.1×103 km3/Ma,增加幅度明显(约2倍),这与亚洲陆缘沉积通量快速增加类似,这一趋势归因于频繁和突然的气候扰动.这个时期萨哈林‒北海道剪切带(Sakhalin⁃Hokkaido Shear Zone)差异性隆升,造成北萨哈林岛盆地的剥蚀增强,沉积输入增大.

2.4.2 千岛盆地

千岛盆地是太平洋板块向鄂霍茨克海板块俯冲作用下在千岛岛弧后形成的弧后盆地,早中新世以来弧后扩张作用开始减弱(Rodnikov et al., 2014).由于缺乏千岛长时间尺度的深海钻探数据,千岛盆地的扩张时间仍存在争议.Werner et al.(2020)根据千岛岛弧火山和千岛盆地陆坡上的Sonne火山链样品的40Ar/39Ar放射性年龄和地球化学研究认为千岛盆地的开启时间为25.3~25.9 Ma.根据热流数据、基底深度、地震地层学以及沉积岩和火成岩的年龄,目前研究表明盆地形成时间集中在早/晚渐新世至中新世(32~15 Ma)(Kimura and Tamaki, 1986Terekhov et al.,2008Emel’yanova and Lelikov,2016).

对千岛盆地浅层岩心的物源分析表明现代主要的沉积物源主要有萨哈林岛、黑龙江(阿穆尔河)、堪察加半岛、千岛群岛和北部鄂霍茨克‒楚科奇火山带风化产物及现代火山喷发产物等(石学法等,2011;王昆山等,2014;Wang et al., 2021).

Prokudin(2015)通过鄂霍茨克海千岛盆地的多道地震资料对沉积堆积速率进行了研究,盆地自白垩纪晚期开始经历持续沉降,渐新世(34~24 Ma)沉积速率为40~50 m/Ma,中新世(24.0~5.5 Ma)的沉积速率降低为35.3 m/Ma,上新世至更新世(5.5~2.0 Ma)的沉积速率增大为51~ 63 m/Ma,更新世(2.0~0 Ma)的沉积速率快速增加为峰值,为80~100 m/Ma,且物源研究表明上新世‒第四纪沉积与爆发式火山活动直接相关.Terekhov et al.(2008)对千岛盆地斜坡沉积层开展了岩石学研究.结果表明,该区域存在两个沉积阶段:晚渐新世‒早中新世以硅质沉积为主,主要堆积于浅海环境;晚中新世‒更新世以陆相沉积为主,受火山活动影响沉积于深海环境.

3 东亚陆缘盆地沉积通量的对比及控制模式

3.1 季风‒构造‒河流耦合作用:东海、南海与日本海

青藏高原隆升运动对欧亚大陆高地形的形成过程提供了关键的制约,对输入低纬度边缘海河流的重组起着至关重要的作用.目前对青藏高原隆升的大量研究表明,在 ~30 Ma北部青藏高原逐渐抬升,高原向外缘发展(Ding et al., 2022).Cui et al.(2024)通过大量物源分析(包括锆石U⁃Pb定年和全岩地球化学研究)对红河、湄公河、珠江、长江等河流进行了系统的解释,研究表明青藏高原东南缘的隆升加速了河流下切和河道东迁.河流作为联系陆与海的纽带,是物质流的重要通道,源自青藏高原的众多大河每年向海输送的沉积物约占全球总量的1/3(Syvitski and Kettner, 2011),此外还有巨量的淡水和溶解质入海.巨量物质入海后直接改变了亚洲边缘海盆的沉积速率(Métivier et al., 1999),有的影响可能是全球性的,如海洋的化学组成和生物地球化学循环(Raymo and Ruddiman, 1992;汪品先,2005;杨守业,2006).

对应于印藏碰撞和青藏高原的隆升,影响东亚陆缘盆地的大陆型水系也发生相应调整.起源于青藏高原的大型河流演化中,向东奔流入海的长江、黄河完成水系调整时间可能在上新世之后(范代读和李从先,2007),但最新的物源分析显示长江东西贯通的时间应在中新世之前,或是长江在渐新世或更早时期就已经存在(Wang et al., 2018Zhang et al., 2021a).

南海的情况比较特殊,南海北部的沉积作用受到青藏高原隆升的控制和影响,大型河流中向南进入南海的主要水系包括红河、湄公河和珠江.地震剖面和钻孔数据表明珠江从小型河流逐步形成南海北部陆缘的大型水系,在约30 Ma前形成现代规模的大致格局(Cao et al., 2018Jin et al., 2022),在华南内陆也存在明显的侵蚀扩张痕迹(Ma et al., 2019; 邵磊等,2020).湄公河也在~8 Ma成为西南次海盆主要沉积物的输送通道(Liu et al., 2017).

在南海的东部和南部,发育于台湾岛、菲律宾和马来西亚的山地河流带来了大量陆源碎屑物质.南海的东部通过台湾海峡、巴士海峡、民都洛等海峡与东海、太平洋、苏禄海和苏拉威西海贯通,而南部通过巽他陆架与印度洋的次表层水和表层水交换(葛倩等,2012).

南海和东海的沉积过程明显受到东亚季风的影响.青藏高原东北部的化学风化记录表明,中新世中期气候转变后,东亚内陆经历了持续干旱化(Wang et al., 2024b).在南海ODP 1146站位的高分辨率海底同位素记录同样表明,在7.0~5.5 Ma东亚冬季风盛行(Holbourn et al., 2018).在东亚冬季风的影响下,内陆干旱化严重,大陆剥蚀减少,已经形成大致格局的大型河流搬运能力减弱,输入到东亚陆缘盆地中的沉积通量发生了减少(图5和图6),东海陆架盆地沉积堆积速率减少了40 m/Ma,降幅为37%,南海陆架盆地沉积通量减少了44.07×103 km3/Ma,降幅为34%.

除却青藏高原隆升、河流水系演化和东亚季风等区域性的控制因素,局部的构造事件也会影响沉积通量的变化,比如南海北部东沙群岛在13.8~ 2.0 Ma之间的构造隆起事件(Lüdmann and Wong,1999Sun et al., 2014).东沙群岛顶部缺失新近纪地层,这表明该地区经历了强烈的侵蚀(Luan et al.,2012).剥蚀形成的沉积物经由海底峡谷向海盆输送,使得南海海盆在这个时期沉积通量增加了3.42×103 km3/Ma,增幅为19%(图5).

另一个重要的局部构造事件为~6.5 Ma左右开始的台湾岛造山运动.在该时期台湾岛快速隆升,而该阶段处于东亚夏季风增强期(图6Gai et al., 2020),气候温暖湿润,剥蚀增加,河流的搬运能力增强,导致了台湾岛浊水溪、高屏溪等剥蚀速率较高的小型河流的形成(Dadson et al., 2003Huh et al., 2011Liu et al., 2016);并向南海东北部和东海冲绳海槽的南部输送了大量物质,使得该阶段东海和南海沉积通量都发生了明显的增长(东海陆架盆地增加了67.67 m/Ma,冲绳海槽增加了40.75×103 km3/Ma,增幅约50%;整个南海地区增加了105.86×103 km3/Ma,增长了64%,图5).

日本海作为东亚陆缘的中纬度海域,大洋钻探在日本海所获岩心(U1425、U1430等)的地球化学证据也表明其受东亚季风影响(Matsuzaki et al., 2020),但由于地理位置的特殊性,没有大型河流的输入(Milliman and Farnsworth, 2011),因此沉积通量的量级与其他海盆相差较大(约10倍,见图5).中‒晚中新世时期,受东亚冬季风的影响和挤压作用主导,郁岭盆地南部发生了区域性的隆起(Lee et al., 2001),其沉积空间减少(沉积通量减少了3.6×103 km3/Ma,减少幅度约40%),同时4.5 Ma以来南部海峡由封闭变成开放(Kozaka et al., 2018),与外界物质的交换加快,因此日本海的沉积通量持续减少(沉积通量减少了0.9×103 km3/Ma,约25%).

3.2 构造‒冰川协同影响:鄂霍茨克海

中低纬度海盆(南海、东海)作为青藏高原隆升的直接影响区,其沉积通量主要受高原驱动的河流水系重组控制.与此不同,高纬度的鄂霍茨克海(非高原影响区)沉积通量主要受构造‒冰川协同作用主导.其主要物源黑龙江(阿穆尔河)独立于高原河流系统;沉积通量受中阿穆尔盆地裂谷沉降(限制沉积输出)、Gobi⁃Altay Range隆升(扩大流域输沙)及全球降温事件(冰川扩张抑制陆地剥蚀)因素控制.

与低纬度海盆不同的是,东亚季风的影响范围在温带和热带之间变化,亚洲气候重组的研究表明在晚渐新世至中新世之交东亚季风形成以来(Wu et al., 2022),其影响的范围在发生持续的改变.研究表明,东亚季风的影响范围最北的区域可能到日本海,而在更高纬度的陆缘盆地基本不受东亚季风的影响或影响较小(Fang et al., 2021).鄂霍茨克海虽位于东亚季风影响范围之外(Wu et al., 2022),但汇入鄂霍茨克海的黑龙江(阿穆尔河)上游可能会受到东亚季风一定程度的影响(Zhang et al., 2021b).

中新世期间发生了两次主要的全球降温事件(图6),分别为中中新世气候转换期(14~13 Ma)和晚中新世全球变冷事件(7.0~5.5 Ma),分别与南极冰盖的快速扩张及高纬度海表温度降低 (~6 ℃)有关(Herbert et al., 2005,2016Capella et al.,2019),晚中新世变冷事件也对应了北半球冰川运动的开始.中‒晚中新世在全球降温事件的影响下,陆地剥蚀减缓,沉积输入减少,鄂霍茨克海沉积通量表现为减少(沉积通量减少了17.5×103 km3/Ma,减少60%,图5).中中新世期间,位于鄂霍茨克海板块与欧亚板块碰撞缝合带的萨哈林岛,作为黑龙江(阿穆尔河)的汇入地,其上游的中阿穆尔盆地发生裂谷沉降,这一沉降扩大了沉积容纳空间,可能阻碍了沉积物向三角洲的输送.

除了受到全球降温事件的区域性因素影响,鄂霍茨克海沉积通量还受到局部构造因素的影响,其中一个是上新世黑龙江(阿穆尔河)上游的Gobi⁃ Altay Range隆升,其改变了主要输入源黑龙江(阿穆尔河)的流域面积.Sorokin and Artyomenko(2003)的流域演化模型显示上新世以前,黑龙江(阿穆尔河)上游向南流经松辽盆地,而河流的改道会使黑龙江(阿穆尔河)流域的面积增加4倍,导致汇入的沉积物体积发生变化,沉积通量增加;另一个局部构造因素为萨哈林岛的加速抬升(2.5~0 Ma;Nicholson et al., 2013),区域性挤压增强,东北部陆架显著隆升,沉积通量快速增加(北萨哈林岛盆地沉积通量增加了21.4×103 km3/Ma,增加约2倍,千岛盆地堆积速率增加了29 m/Ma,增长约1/2,图5).

4 结论和展望

本文对东亚陆源典型陆缘盆地的百万年构造尺度的沉积通量进行计算和分析,以探究东亚陆缘不同纬度沉积动力过程的差异性,以及导致这些差异性的区域及局部控制因素,包括区域的构造事件、气候变化、陆上水系、海平面事件等,取得主要认识如下:

(1)中‒低纬度海盆的沉积通量变化驱动机制:青藏高原隆升通过地形重塑驱动长江、湄公河等大型河流重组,大型河流受季风影响显著.晚中新世东亚冬季风增强导致内陆干旱化,剥蚀减弱,东海、南海陆架及日本海沉积通量减少.上新世东亚夏季风强化,河流搬运能力显著增强,台湾岛隆升增加沉积输入,东海和南海沉积通量增加.作为无大河输入的特殊海盆,日本海又因局部构造隆升及海峡开放的影响,沉积通量持续减少.以上揭示中‒低纬度海盆通量演化受东亚季风演化、构造隆升及大型河流的协同控制.

(2)高纬度海盆的沉积通量变化驱动机制:中新世的全球变冷事件(14~13 Ma和7.0~ 5.4 Ma)对鄂霍茨克海影响明显,陆地风化剥蚀减弱,沉积通量明显减少.上新世以来,黑龙江(阿穆尔河)受蒙古高原隆升的影响,流域面积扩大,萨哈林岛发生隆升,沉积输入增大,揭示全球性变冷事件、局部构造事件的协同影响.

除南海、冲绳海槽的沉积通量研究相对较完整以外,东海、日本海及鄂霍茨克海因多道地震数据不足或沉积定量化研究较少,对其控制机制研究仍然存在不足.目前笔者正在对东海陆架盆地开展百万年尺度的沉积通量研究,以完善东亚陆缘盆地沉积过程的驱动机制.新生代的边缘海源‒汇过程可以将海区“汇”的工作与大陆和岛屿入海物质的“源”通量深刻结合,从而进行从源到汇的系统、综合研究.从区域视角出发,未来可以进行新生代或者更长时间尺度的、推进到对全球边缘海盆的沉积通量研究,促进对全球尺度陆 地‒海洋的沉积源‒汇过程定量化约束的认识.

参考文献

[1]

Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low⁃Relief, High⁃Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039

[2]

Capella, W., Flecker, R., Hernández⁃Molina, F. J., et al., 2019. Mediterranean Isolation Preconditioning the Earth System for Late Miocene Climate Cooling. Scientific Reports, 9(1): 3795. https://doi.org/10.1038/s41598⁃019⁃40208⁃2

[3]

Cheng, Y. L., Wan, S. M., 2023. Late Cenozoic Paleo⁃Productivity Evolution of the Japan Sea: A Review. Acta Sedimentologica Sinica, 41(6): 1714-1738 (in Chinese with English abstract).

[4]

Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large⁃Scale Drainage Patterns. Tectonics, 23(1): 2002TC1006. https://doi.org/10.1029/2002tc001402

[5]

Clift, P. D., 2006. Controls on the Erosion of Cenozoic Asia and the Flux of Clastic Sediment to the Ocean. Earth and Planetary Science Letters, 241(3-4): 571-580. https://doi.org/10.1016/j.epsl.2005.11.028

[6]

Clift, P. D., Jonell, T. N., 2021. Monsoon Controls on Sediment Generation and Transport: Mass Budget and Provenance Constraints from the Indus River Catchment, Delta and Submarine Fan over Tectonic and Multimillennial Timescales. Earth⁃Science Reviews, 220: 103682. https://doi.org/10.1016/j.earscirev.2021.103682

[7]

Clift, P. D., Sun, Z., 2006. The Sedimentary and Tectonic Evolution of the Yinggehai⁃Song Hong Basin and the Southern Hainan Margin, South China Sea: Implications for Tibetan Uplift and Monsoon Intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405. https://doi.org/10.1029/2005JB004048

[8]

Clift, P. D., Wan, S. M., Blusztajn, J., 2014. Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea: A Review of Competing Proxies. Earth⁃Science Reviews, 130: 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002

[9]

Cui, Y. C., Shao, L., Li, Z. X., et al., 2024. Early Cenozoic Drainage Network and Paleogeographic Evolution within the SE Tibetan Plateau and Its Surrounding Area: Synthetic Constraints from Onshore⁃Offshore Geological Dataset. Earth⁃Science Reviews, 258: 104932. https://doi.org/10.1016/j.earscirev.2024.104932

[10]

Cukur, D., Horozal, S., Kim, D. C., et al., 2011. Seismic Stratigraphy and Structural Analysis of the Northern East China Sea Shelf Basin Interpreted from Multi⁃Channel Seismic Reflection Data and Cross⁃Section Restoration. Marine and Petroleum Geology, 28(5): 1003-1022. https://doi.org/10.1016/j.marpetgeo.2011.01.002

[11]

Dadson, S. J., Hovius, N., Chen, H., et al., 2003. Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature, 426(6967): 648-651. https://doi.org/10.1038/nature02150

[12]

Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017⁃022⁃00318⁃4

[13]

Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011

[14]

Dou, Y., Yang, S., Liu, Z., et al., 2012. Sr⁃Nd Isotopic Constraints on Terrigenous Sediment Provenances and Kuroshio Current Variability in the Okinawa Trough during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366: 38-47. https://doi.org/10.1016/j.palaeo.2012.09.003

[15]

Einsels, G., 1992. Sedimentary Basins: Evolution, Facies and Sedimentary Budget. Springer, New York.

[16]

Emel’yanova, T. A., Lelikov, E. P., 2016. Geochemistry and Petrogenesis of the Late Mesozoic⁃Early Cenozoic Volcanic Rocks of the Okhotsk and Japan Marginal Seas. Geochemistry International, 54(6): 509-521. https://doi.org/10.1134/S0016702916040030

[17]

Fan, D. D., Li, C. X., 2007. Reviews on Researches of Timing of the Yangtze Draining the Tibetan Plateau to the East China Sea. Marine Geology & Quaternary Geology, 27(2): 121-131 (in Chinese with English abstract).

[18]

Fang, X. M., Yan, M. D., Zhang, W. L., et al., 2021. Paleogeography Control of Indian Monsoon Intensification and Expansion at 41 Ma. Science Bulletin, 66(22): 2320-2328. https://doi.org/10.1016/j.scib.2021.07.023

[19]

Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020

[20]

Fu, X. W., Zhu, W. L., Geng, J. H., et al., 2021. The Present⁃Day Yangtze River Was Established in the Late Miocene: Evidence from Detrital Zircon Ages. Journal of Asian Earth Sciences, 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600

[21]

Gai, C. C., Liu, Q. S., Roberts, A. P., et al., 2020. East Asian Monsoon Evolution since the Late Miocene from the South China Sea. Earth and Planetary Science Letters, 530: 115960. https://doi.org/10.1016/j.epsl.2019.115960

[22]

Ge, Q., Meng, X. W., Chu, F. Y., et al., 2012. Paleoceanographic Records of Core ZHS⁃176 from the Northern South China Sea: Oxygen Isotope and Organic Carbon. Marine Geology & Quaternary Geology, 32(5): 73-80 (in Chinese with English abstract).

[23]

Gharsalli, R., Zouaghi, T., Soussi, M., et al., 2013. Seismic Sequence Stratigraphy of Miocene Deposits Related to Eustatic, Tectonic and Climatic Events, Cap Bon Peninsula, Northeastern Tunisia. Comptes Rendus Geoscience, 345(9-10): 401-417. https://doi.org/10.1016/j.crte.2013.07.003

[24]

Godin, L., Grujic, D., Law, R. D., et al., 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones: An Introduction. Geological Society, London, Special Publications, 268(1): 1-23. https://doi.org/10.1144/gsl.sp.2006.268.01.01

[25]

Gorbarenko, S. A, Yanchenko, E. A, Psheneva, O. Y, et al., 2020. Orbital and Millennial⁃Scale Environmental and Hydrological Changes of the Central Okhotsk Sea over the Last 136 kyr Inferred from Micropaleontological (Radiolarian and Benthic Foraminifera), Geochemical and Lithological Proxies and the Mechanisms Responsible for them. Quaternary Science Reviews, 247: 106569. https://doi.org/10.1016/j.quascirev.2020.106569

[26]

Gungor, A., Lee, G. H., Kim, H. J., et al., 2012. Structural Characteristics of the Northern Okinawa Trough and Adjacent Areas from Regional Seismic Reflection Data: Geologic and Tectonic Implications. Tectonophysics, 522-523: 198-207. https://doi.org/10.1016/j.tecto.2011.11.027

[27]

He, Z. L., Zhang, Z. S., Guo, Z. T., et al., 2021. Middle Miocene (∼14 Ma) and Late Miocene (∼6 Ma) Paleogeographic Boundary Conditions. Paleoceanography and Paleoclimatology, 36(11): e2021PA004298. https://doi.org/10.1029/2021PA004298

[28]

Herbert, R., Jamtvedt, G., Mead, J., et al., 2005. Outcome Measures Measure Outcomes, Not Effects of Intervention. Australian Journal of Physiotherapy, 51(1): 3-4.

[29]

Herbert, T. D., Lawrence, K. T., Tzanova, A., et al., 2016. Late Miocene Global Cooling and the Rise of Modern Ecosystems. Nature Geoscience, 9: 843-847. https://doi.org/10.1038/ngeo2813

[30]

Hoang, L. V., Wu, F. Y., Clift, P. D., et al., 2009. Evaluating the Evolution of the Red River System Based on in Situ U⁃Pb Dating and Hf Isotope Analysis of Zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008. https://doi.org/10.1029/2009GC002819

[31]

Holbourn, A. E., Kuhnt, W., Clemens, S. C., et al., 2018. Late Miocene Climate Cooling and Intensification of Southeast Asian Winter Monsoon. Nature Communications, 9(1): 1584. https://doi.org/10.1038/s41467⁃018⁃03950⁃1

[32]

Huang, Q. Y., 2017. Geological Ages of Taiwan Stratigraphy and Tectonic Events. Scientia Sinica (Terrae), 47(4): 394-405 (in Chinese with English abstract).

[33]

Huang, W., Wang, P. X., 2006. Sediment Volume and Distribution in the South China Sea since the Oligocene. Scientia Sinica (Terrae), 36(9): 822-829 (in Chinese with English abstract).

[34]

Huh, C. A., Chen, W., Hsu, F. H., et al., 2011. Modern (<100 Years) Sedimentation in the Taiwan Strait: Rates and Source⁃to⁃Sink Pathways Elucidated from Radionuclides and Particle Size Distribution. Continental Shelf Research, 31(1): 47-63. https://doi.org/10.1016/j.csr.2010.11.002

[35]

Jin, H. L., Wan, S. M., Clift, P. D., et al., 2022. Birth of the Pearl River at 30 Ma: Evidence from Sedimentary Records in the Northern South China Sea. Earth and Planetary Science Letters, 600: 117872. https://doi.org/10.1016/j.epsl.2022.117872

[36]

Jolivet, L., 1992. Neogene Kinematics in the Japan Sea Region and Volcanic Activity of the Northeast Japan Arc. Ocean Drilling Program, College Station.

[37]

Kao, S. J., Dai, M. H., Wei, K. Y., et al., 2008. Enhanced Supply of Fossil Organic Carbon to the Okinawa Trough since the Last Deglaciation. Paleoceanography, 23(2): PA2207. https://doi.org/10.1029/2007PA001440

[38]

Kim, K. J., Yoo, D. G., Kang, N. K., et al., 2020. Tectonostratigraphic Framework and Depositional History of the Deepwater Ulleung Basin, East Sea/Sea of Japan. Basin Research, 32(4): 613-635. https://doi.org/10.1111/bre.12386

[39]

Kimura, G., Tamaki, K., 1986. Collision, Rotation, and Back⁃Arc Spreading in the Region of the Okhotsk and Japan Seas. Tectonics, 5(3): 389-401. https://doi.org/10.1029/tc005i003p00389

[40]

Kimura, M., 1985. Back⁃Arc Rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3): 222-240. https://doi.org/10.1016/0264⁃8172(85)90012⁃1

[41]

Kong, P., Jia, J., Zheng, Y., 2014. Time Constraints for the Yellow River Traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. https://doi.org/10.1002/2013GC004912

[42]

Kozaka, Y., Horikawa, K., Asahara, Y., et al., 2018. Late Miocene⁃Mid⁃Pliocene Tectonically Induced Formation of the Semi⁃Closed Japan Sea, Inferred from Seawater Nd Isotopes. Geology, 46(10): 903-906. https://doi.org/10.1130/G45033.1

[43]

Kwon, Y. I., Boggs, S., 2002. Provenance Interpretation of Tertiary Sandstones from the Cheju Basin (NE East China Sea): A Comparison of Conventional Petrographic and Scanning Cathodoluminescence Techniques. Sedimentary Geology, 152(1-2): 29-43. https://doi.org/10.1016/S0037⁃0738(01)00284⁃6

[44]

Lee, G. H., Kim, H. J., Han, S. J., et al., 2001. Seismic Stratigraphy of the Deep Ulleung Basin in the East Sea (Japan Sea) Back⁃Arc Basin. Marine and Petroleum Geology, 18(5): 615-634. https://doi.org/10.1016/ S0264⁃8172(01)00016⁃2

[45]

Lei, C., Clift, P. D., Ren, J. Y., et al., 2019. A Rapid Shift in the Sediment Routing System of Lower⁃Upper Oligocene Strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249-258. https://doi.org/10.1016/j.marpetgeo.2019.03.012

[46]

Lei, C., Ren, J. Y., Sternai, P., et al., 2015. Structure and Sediment Budget of Yinggehai⁃Song Hong Basin, South China Sea: Implications for Cenozoic Tectonics and River Basin Reorganization in Southeast Asia. Tectonophysics, 655: 177-190. https://doi.org/10.1016/j.tecto.2015.05.024

[47]

Letouzey, J., Kimura, M., 1985. Okinawa Trough Genesis: Structure and Evolution of a Backarc Basin Developed in a Continent. Marine and Petroleum Geology, 2(2): 111-130. https://doi.org/10.1016/0264⁃8172(85)90002⁃9

[48]

Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015. Proceedings of the International Ocean Discovery Program (IODP), Volume 349, South China Sea Tectonics. IODP, College Station. https://doi.org/10.14379/iodp.proc.349.2015

[49]

Li, F. L., Yang, S. Y., Breecker, D. O., et al., 2022. Responses of Silicate Weathering Intensity to the Pliocene⁃Quaternary Cooling in East and Southeast Asia. Earth and Planetary Science Letters, 578: 117301. https://doi.org/10.1016/j.epsl.2021.117301

[50]

Li, J. J., Xie, S. Y., Kuang, M. S., 2001. Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation. Geomorphology, 41(2-3): 125-135. https://doi.org/10.1016/S0169⁃555X(01)00110⁃6

[51]

Li, Q., Zhang, Q., Li, G., et al., 2019. A New Perspective for the Sediment Provenance Evolution of the Middle Okinawa Trough since the Last Deglaciation Based on Integrated Methods. Earth and Planetary Science Letters, 528: 115839. https://doi.org/10.1016/j.epsl.2019.115839

[52]

Lin, X., Dröllner, M., Barham, M., et al., 2025. The Cenozoic Evolution of the Yellow River. Earth⁃Science Reviews, 261: 104997. https://doi.org/10.1016/j.earscirev.2024.104997

[53]

Lin, X., Liu, J., Liu, H. J., et al., 2023. Miocene Evolution Reconstruction of the Yellow River Drainage Basin: Constraints from K⁃Feldspar Pb Isotopes. Acta Geologica Sinica, 97(10): 3438-3455 (in Chinese with English abstract).

[54]

Lin, X., Liu, J., Liu, H. J., et al., 2024. When Was the Yellow River Formed? Earth Science, 49(6): 2158-2185 (in Chinese with English abstract).

[55]

Liu, C., Clift, P. D., Murray, R. W., et al., 2017. Geochemical Evidence for Initiation of the Modern Mekong Delta in the Southwestern South China Sea after 8 Ma. Chemical Geology, 451: 38-54. https://doi.org/10.1016/j.chemgeo.2017.01.008

[56]

Liu, C. Z., Jia, H. L., Chen, X. F., 2001. Sedimentary Texture and Sedimentation in the Minjiang River Estuary. Oceanologia et Limnologia Sinica, 32(2): 177-184 (in Chinese with English abstract).

[57]

Liu, H. Q., Yumul, G. P. Jr, Dimalanta, C. B., et al., 2020. Western Northern Luzon Isotopic Evidence of Transition from Proto⁃South China Sea to South China Sea Fossil Ridge Subduction. Tectonics, 39(2): e2019TC005639. https://doi.org/10.1029/2019TC005639

[58]

Liu, J. T., Kao, S. J., Huh, C. A., et al., 2013. Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area. Annual Review of Marine Science, 5: 47-68. https://doi.org/10.1146/annurev⁃marine⁃121211⁃172307

[59]

Liu, Y. J., Song, S. R., Lee, T. Q., et al., 2006. Mineralogical and Geochemical Changes in the Sediments of the Okhotsk Sea during Deglacial Periods in the Past 500 kyrs. Global and Planetary Change, 53(1-2): 47-57. https://doi.org/10.1016/j.gloplacha.2006.01.007

[60]

Liu, Z. F., Stattegger, K., 2014. South China Sea Fluvial Sediments: An Introduction. Journal of Asian Earth Sciences, 79: 507-508. https://doi.org/10.1016/j.jseaes.2013.11.003

[61]

Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source⁃to⁃Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth⁃Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005

[62]

Luan, X. W., Zhang, L., Peng, X. C., 2012. Dongsha Erosive Channel on Northern South China Sea Shelf and Its Induced Kuroshio South China Sea Branch. Science China Earth Sciences, 55(1): 149-158. https://doi.org/10.1007/s11430⁃011⁃4322⁃y

[63]

Lüdmann, T., Wong, H. K., 1999. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311(1-4): 113-138. https://doi.org/10.1016/S0040⁃1951(99)00155⁃9

[64]

Ma, M., Chen, G. J., Lyu, C. F., et al., 2019. The Formation and Evolution of the Paleo⁃Pearl River and Its Influence on the Source of the Northern South China Sea. Marine and Petroleum Geology, 106: 171-189. https://doi.org/10.1016/j.marpetgeo.2019.04.035

[65]

Ma, X. L., Tian, J., 2015. East Asian Monsoon Evolution and Aridification of Northwest China Viewed from Land and Sea on the Tectonic⁃Orbital Time Scale since 15 Ma. Quaternary Sciences, 35(6): 1320-1330 (in Chinese with English abstract).

[66]

Matsuzaki, K. M., Suzuki, N., Tada, R., 2020. An Intensified East Asian Winter Monsoon in the Japan Sea between 7.9 and 6.6 Ma. Geology, 48(9): 919-923. https://doi.org/10.1130/g47393.1

[67]

McCann, T., Saintot, A., 2003. Tracing Tectonic Deformation Using the Sedimentary Record: An Overview. Geological Society, London, Special Publications, 208(1): 1-28. https://doi.org/10.1144/gsl.sp.2003.208.01.01

[68]

Métivier, F., Gaudemer, Y., Tapponnier, P., et al., 1999. Mass Accumulation Rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280-318

[69]

Miao, Y. F., Warny, S., Liu, C., et al., 2022. Palynomorph Assemblages Evidence for River Reorganization 8.5 Million Years Ago in Southeast Asia. Global and Planetary Change, 212: 103808. https://doi.org/10.1016/j.gloplacha.2022.103808

[70]

Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511781247

[71]

Nicholson, U., van der Es, B., Clift, P. D., et al., 2016. The Sedimentary and Tectonic Evolution of the Amur River and North Sakhalin Basin: New Evidence from Seismic Stratigraphy and Neogene⁃Recent Sediment Budgets. Basin Research, 28(2): 273-297. https://doi.org/10.1111/bre.12110

[72]

Nicholson, U., VanLaningham, S., Macdonald, D. I. M., 2013. Quaternary Landscape Evolution over a Strike⁃Slip Plate Boundary: Drainage Network Response to Incipient Orogenesis in Sakhalin, Russian Far East. Geosphere, 9(3): 588-601. https://doi.org/10.1130/GES00883.1

[73]

Prokudin, V. G., 2015. On the Age of the Sedimentary Cover of the Kurile Basin, Sea of Okhotsk. Russian Journal of Pacific Geology, 9(3): 215-226. https://doi.org/10.1134/S1819714015030069

[74]

Qi, J. H., Wu, Z. Q., Zhang, X. H., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back⁃Arc Area. Earth Science, 45(7): 2495-2507 (in Chinese with English abstract).

[75]

Qiao, S., Shi, X., Wang, G., et al., 2017. Sediment Accumulation and Budget in the Bohai Sea, Yellow Sea and East China Sea. Marine Geology, 390: 270-281. https://doi.org/10.1016/j.margeo.2017.06.004

[76]

Qin, Y. S., Zhao, Y. Y., Chen, L. R., et al., 1987. Geology of the East China Sea. Science Press, Beijing, 28-36 (in Chinese).

[77]

Raymo, M. E., Ruddiman, W. F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359: 117-122. https://doi.org/10.1038/359117a0

[78]

Richardson, N. J., Densmore, A. L., Seward, D., et al., 2010. Did Incision of the Three Gorges Begin in the Eocene? Geology, 38(6): 551-554. https://doi.org/10.1130/g30527.1

[79]

Rodnikov, A. G., Sergeyeva, N. A., Zabarinskaya, L. P., 2014. Crustal and Mantle Structure of the Sea of Okhotsk, Pacific Northwest: A Review. Episodes, 37(4): 312-316. https://doi.org/10.18814/epiiugs/2014/v37i4/012

[80]

Sagawa, T., Nagahashi, Y., Satoguchi, Y., et al., 2018. Integrated Tephrostratigraphy and Stable Isotope Stratigraphy in the Japan Sea and East China Sea Using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon. Progress in Earth and Planetary Science, 5(1): 18. https://doi.org/10.1186/s40645⁃018⁃0168⁃7

[81]

Sakamoto, T., Ikehara, M., Aoki, K., et al., 2005. Ice⁃Rafted Debris (IRD)⁃Based Sea⁃Ice Expansion Events during the Past 100 kyrs in the Okhotsk Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 52(16-18): 2275-2301. https://doi.org/10.1016/j.dsr2.2005.08.007

[82]

Sakamoto, T., Ikehara, M., Uchida, M., et al., 2006. Millennial⁃Scale Variations of Sea⁃Ice Expansion in the Southwestern Part of the Okhotsk Sea during the Past 120 kyr: Age Model and Ice⁃Rafted Debris in IMAGES Core MD01⁃2412. Global and Planetary Change, 53(1-2): 58-77. https://doi.org/10.1016/j.gloplacha.2006.01.012

[83]

Shao, L., Qiao, P. J., Cui, Y. C., et al., 2020. The Evolutions of the Fluvial Systems in the Northern South China Sea since the Early Cenozoic. Science & Technology Review, 38(18): 57-61 (in Chinese with English abstract).

[84]

Shi, X. F., Qiao, S. Q., Yang, S. Y., et al., 2021. Progress in Sedimentology Research of the Asian Continental Margin (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319-336 (in Chinese with English abstract).

[85]

Shi, X. F., Zou, J. J., Wang, K. S., 2011. Paleoenvironmental Changes in the Okhotsk Sea since Late Pleistocene and Its Driving Force. Marine Geology & Quaternary Geology, 31(6): 1-12 (in Chinese with English abstract).

[86]

Sibuet, J. C., Hsu, S. K., 2004. How Was Taiwan Created? Tectonophysics, 379(1-4): 159-181. https://doi.org/10.1016/j.tecto.2003.10.022

[87]

Song, G., Lee, H. S., Lee, S., 2024. Architecture and Evolution of Shelf⁃Margin Clinoforms Developed in a Back⁃Arc Tectonic Setting: Insights from Quantitative Analysis on the South⁃West Shelf Margin of the Ulleung Basin. Basin Research, 36(2): e12859. https://doi.org/10.1111/bre.12859

[88]

Sorokin, A. P., Artyomenko, T. V., 2003. Structural Evolution of the Eastern Margin of Eurasia in Late Mesozoic and Cenozoic. Journal of Geoscientific Research in Northeast Asia, 6(2): 149-159.

[89]

Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2014. Neogene Igneous Intrusions in the Northern South China Sea: Evidence from High⁃Resolution Three Dimensional Seismic Data. Marine and Petroleum Geology, 54: 83-95. https://doi.org/10.1016/j.marpetgeo.2014.02.014

[90]

Sun, X. L., Tian, Y. T., Kuiper, K. F., et al., 2021. No Yangtze River Prior to the Late Miocene: Evidence from Detrital Muscovite and K⁃Feldspar 40Ar/39Ar Geochronology. Geophysical Research Letters, 48(5): e2020GL089903. https://doi.org/10.1029/2020GL089903

[91]

Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019JB017584

[92]

Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002

[93]

Suo, Y. H., Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract).

[94]

Syvitski, J. P. M., Kettner, A., 2011. Sediment Flux and the Anthropocene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 369(1938): 957-975. https://doi.org/10.1098/rsta.2010.0329

[95]

Tada, R., Murray, R. W., Alvarez Zarikian, C. A., 2015. Proceedings of Integrated Ocean Drilling Program (IODP), Volume 346. IODP, College Station. https://doi.org/10.2204/iodp.proc.346.101

[96]

Terekhov, E. P., Tsoy, I. B., Vashchenkova, N. G., et al., 2008. Sedimentation Settings and Evolution History of the Kuril Basin (Sea of Okhotsk) in the Cenozoic. Oceanology, 48(4): 569-577. https://doi.org/10.1134/S0001437008040115

[97]

Vassallo, R., Jolivet, M., Ritz, J. F., et al., 2007. Uplift Age and Rates of the Gurvan Bogd System (Gobi⁃Altay) by Apatite Fission Track Analysis. Earth and Planetary Science Letters, 259(3/4): 333-346. https://doi.org/10.1016/j.epsl.2007.04.047

[98]

Wan, S. M., Li, A. C., Clift, P. D., et al., 2006. Development of the East Asian Summer Monsoon: Evidence from the Sediment Record in the South China Sea since 8.5 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 139-159. https://doi.org/10.1016/j.palaeo.2006.06.013

[99]

Wan, S. M., Li, A. C., Clift, P. D., et al., 2007. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. https://doi.org/10.1016/j.palaeo.2007.07.009

[100]

Wang, F. L., He, G. W., Deng, X. G., et al., 2021. Fish Teeth Sr Isotope Stratigraphy and Nd Isotope Variations: New Insights on REY Enrichments in Deep⁃Sea Sediments in the Pacific. Journal of Marine Science and Engineering, 9(12): 1379. https://doi.org/10.3390/jmse9121379

[101]

Wang, F., Ding, W. W., 2023. How Did Sediments Disperse and Accumulate in the Oceanic Basin, South China Sea. Marine and Petroleum Geology, 147: 105979. https://doi.org/10.1016/j.marpetgeo.2022.105979

[102]

Wang, H. Q., Ding, W. W., Fang, P. G., et al., 2024a. Neogene and Quaternary Sediment Accumulation in the Okinawa Trough. Marine and Petroleum Geology, 162: 106750. https://doi.org/10.1016/j.marpetgeo.2024.106750

[103]

Wang, K. S., Shi, X. F., Wu, Y. H., et al., 2014. Characteristics and Provenance Implications of Heavy Mineral in Core OS03⁃1 from the East⁃Southern Okhotsk Sea. Acta Oceanologica Sinica, 36(5): 177-185 (in Chinese with English abstract).

[104]

Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea Is Not a Mini⁃Atlantic: Plate⁃Edge Rifting vs Intra⁃Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135

[105]

Wang, P. X., Tian, J., Cheng, X. R., et al., 2004. Major Pleistocene Stages in a Carbon Perspective: The South China Sea Record and Its Global Comparison. Paleoceanography, 19(4): PA4005. https://doi.org/10.1029/2003PA000991

[106]

Wang, P., Li, Q., 2009. The South China Sea: Paleoceanography and Sedimentology. Springer, New York.

[107]

Wang, P. X., 2005. Cenozoic Deformation and History of Sea⁃Land Interactions in Asia. Earth Science, 30(1): 1-18 (Chinese with English abstract).

[108]

Wang, W., Bidgoli, T., Yang, X. H., et al., 2018. Source⁃to⁃Sink Links between East Asia and Taiwan from Detrital Zircon Geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688. https://doi.org/10.1029/2018GC007576

[109]

Wang, Z. X., Bradshaw, C. D., Wei, H. C., et al., 2024b. Moisture Variability in Northeast Tibet Following the Middle Miocene Climate Transition. Communications Earth & Environment, 5: 556. https://doi.org/10.1038/s43247⁃024⁃01710⁃2

[110]

Weaver, R., Roberts, A. P., Flecker, R., et al., 2004. Tertiary Geodynamics of Sakhalin (NW Pacific) from Anisotropy of Magnetic Susceptibility Fabrics and Paleomagnetic Data. Tectonophysics, 379(1⁃4): 25-42. https://doi.org/10.1016/j.tecto.2003.09.028

[111]

Werner, R., Baranov, B., Hoernle, K., et al., 2020. Discovery of Ancient Volcanoes in the Okhotsk Sea (Russia): New Constraints on the Opening History of the Kurile Back Arc Basin. Geosciences, 10(11): 442. https://doi.org/10.3390/geosciences10110442

[112]

Wu, F. D., Lu, Y. C., Li, S. T., et al., 1998. Tertiary Sequence Stratigraphic Framework and Sea⁃Level Changes in the East China Sea Shelf Basin. Earth Science,23(1):13-20 (in Chinese with English abstract).

[113]

Wu, F. L., Fang, X. M., Yang, Y. B., et al., 2022. Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 684-700. https://doi.org/10.1038/s43017⁃022⁃00331⁃7

[114]

Wu, L. C., 1990. Quaternary Sedimentary Characteristics and Evolvement of the Estuary of Minjiang River. Donghai Marine Science, 8(3): 26-34 (in Chinese with English abstract).

[115]

Wu, Y. M., Ding, W. W., Clift, P. D., et al., 2020. Sedimentary Budget of the Northwest Sub⁃Basin, South China Sea: Controlling Factors and Geological Implications. International Geology Review, 62(7-8): 970-987. https://doi.org/10.1080/00206814.2019.1597392

[116]

Wu, Y. M., Ding, W. W., Sun, Z., et al., 2018. Sedimentary Budget of the Southwest Sub⁃Basin, South China Sea: Controlling Factors and Geological Implications. Geological Journal, 53(6): 3082-3092. https://doi.org/10.1002/gj.3145

[117]

Xie, H., Zhou, D., Pang, X., et al., 2013. Cenozoic Sedimentary Evolution of Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea. Marine Geophysical Research, 34(3): 159-173. https://doi.org/10.1007/s11001⁃013⁃9183⁃7

[118]

Xu, R. Y., 1995. Formation and Migration of the Water System of Qiantang River. Zhejiang Land & Resources, (2): 40-48 (in Chinese with English abstract).

[119]

Xu, S. M., Ye, Q., Li, S. Z., et al., 2016. Sequential Patterns in Cenozoic Marginal Basins of the Northwest Pacific. Geological Journal, 51: 387-415. https://doi.org/10.1002/gj.2819

[120]

Yan, Y., Carter, A., Palk, C., et al., 2011. Understanding Sedimentation in the Song Hong⁃Yinggehai Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 12(6): Q06014. https://doi.org/10.1029/2011GC003533

[121]

Yang, F. L., Xu, X., Zhao, W. F., et al., 2011. Petroleum Accumulations and Inversion Structures in the Xihu Depression, East China Sea Basin. Journal of Petroleum Geology, 34(4): 429-440. https://doi.org/10.1111/j.1747⁃5457.2011.00513.x

[122]

Yang, S. Y., 2006. Advances in Sedimentary Geochemistry and Tracing Applications of Asian Rivers. Advances in Earth Science, 21(6): 648-655 (in Chinese with English abstract).

[123]

You, Y., Huber, M., Müller, R. D., et al., 2009. Simulation of the Middle Miocene Climate Optimum. Geophysical Research Letters, 36(4): L04702. https://doi.org/10.1029/2008GL036571

[124]

Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. https://doi.org/10.1126/science.1059412

[125]

Zhai, L. N., Wan, S. M., Colin, C., et al., 2021. Deep⁃Water Formation in the North Pacific during the Late Miocene Global Cooling. Paleoceanography and Paleoclimatology, 36(2): e2020PA003946. https://doi.org/10.1029/2020PA003946

[126]

Zhan, J. M., Tang, Y. J., Liu, B., et al., 2024. Sediment Provenance and Its Direction of Yueguifeng Formation in Lishui⁃Jiaojiang Depression: Evidence from Detrital Zircon U⁃Pb Chronology and Heavy Minerals. Earth Science, 49(4): 1339-1351 (in Chinese with English abstract).

[127]

Zhang, J. Y., Krijgsman, W., Lu, Y. C., et al., 2021a. Detrital Zircon Ages Reveal Yangtze Provenance since the Early Oligocene in the East China Sea Shelf Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110548. https://doi.org/10.1016/j.palaeo.2021.110548

[128]

Zhang, R., Jiang, D. B., Zhang, Z. S., et al., 2017. Comparison of the Climate Effects of Surface Uplifts from the Northern Tibetan Plateau, the Tianshan, and the Mongolian Plateau on the East Asian Climate. Journal of Geophysical Research: Atmospheres, 122(15): 7949-7970. https://doi.org/10.1002/2017jd026470

[129]

Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2022. Cenozoic Reorganization of Fluvial Systems in Eastern China: Sedimentary Provenance of Detrital K⁃Feldspar in Taiwan. Chemical Geology, 592: 120740. https://doi.org/10.1016/j.chemgeo.2022.120740

[130]

Zhang, Z. J., Tian, Y. T., Sun, X. L., et al., 2025. Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea. Earth Science, 50(7): 2775-2790 (in Chinese with English abstract).

[131]

Zhang, Z. Q., Yao, Q., Liu, K. B., et al., 2021b. Historical Flooding Regime along the Amur River and Its Links to East Asia Summer Monsoon Circulation. Geomorphology, 388: 107782. https://doi.org/10.1016/j.geomorph.2021.107782

[132]

Zhao, P., Alexandrov, I., Jahn, B. M., et al., 2018. Timing of Okhotsk Sea Plate Collision with Eurasia Plate: Zircon U⁃Pb Age Constraints from the Sakhalin Island, Russian Far East. Journal of Geophysical Research: Solid Earth, 123(9): 8279-8293. https://doi.org/10.1029/2018JB015800

[133]

Zhao, Q. H., Wang, P. X., 1999. Progress in Quaternary Paleoceanography of the South China Sea: A Review. Quaternary Sciences, 19(6): 481-501 (in Chinese with English abstract).

[134]

Zheng, H., Jia, D., Chen, J., et al., 2011. Did Incision of the Three Gorges Begin in the Eocene? Geology, 39(9): e244-e244. https://doi.org/10.1130/G30527.1

[135]

Zheng, H. B., Chen, G. C., Xie, X., et al., 2008. Grain Size Distribution and Dynamic Control of Late Quaternary Terrigenous Sediments in the South China Sea and Their Implication for East Asian Monsoon Evolution. Quaternary Sciences, 28(3): 414-424 (in Chinese with English abstract).

[136]

Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre⁃Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110

基金资助

科技部重点研发项目(2023YFF0803401)

AI Summary AI Mindmap
PDF (6732KB)

127

访问

0

被引

详细

导航
相关文章

AI思维导图

/