西北太平洋热带气旋生成‒快速增强复合事件的对流及环境特征
Convective and Environmental Characteristics of Tropical Cyclone Genesis⁃Rapid Intensification Compound Events in the Western North Pacific
,
作为业务预报中的主要难点,明晰热带气旋(TC)生成、快速增强(RI)及两者复合事件(RIFG)的成因对于防灾减灾具有重要意义.基于观测资料对西北太平洋RIFG事件和无RI生成事件(NRIG)的对流及环境特征进行了研究.结果表明,RIFG个例相比NRIG个例平均纬度更低,且逆切变左侧的内核降水更强,受到较弱的垂直风切变和背景相对涡度、较高的内核相对涡度、高层辐散、海温、中层相对湿度和海表潜热通量的影响,这些有利的动力、热力条件为RIFG事件的发生提供了基础.进一步对比弱风切变(W-VWS)和中等‒强风切变(MS-VWS)下的RIFG个例发现,MS-VWS个例的降水更强、更不对称,且W-VWS(MS-VWS)个例在逆切变、切变右侧(顺切变、切变左侧)有更为有利的环境热动力条件.
As one of the main challenges in operational forecasting, clarifying the mechanisms behind tropical cyclone (TC) genesis, rapid intensification (RI), and their compound events (RIFG) is of great significance for disaster prevention and mitigation. Based on observational data, this study examines the convective and environmental characteristics of RIFG events and non-RI genesis events (NRIG) over the western North Pacific. On average, RIFG cases occur at lower latitudes compared to NRIG cases, and have stronger inner-core precipitation on the upshear left side. These cases are also associated with weaker vertical wind shear and background relative vorticity, higher inner-core relative vorticity, upper-level divergence, sea surface temperature, mid-level relative humidity, and surface latent heat flux. These favorable dynamic and thermodynamic conditions provide the basis for RIFG events. Further comparison between RIFG cases under weak vertical wind shear (W-VWS) and moderate-strong vertical wind shear (MS-VWS) shows that MS-VWS cases exhibit stronger and more asymmetric precipitation. Additionally, W-VWS (MS-VWS) cases experience more favorable environmental dynamic and thermodynamic conditions on the upshear and right-of-shear sides (downshear and left-of-shear sides), respectively.
tropical cyclone / genesis / rapid intensification / convection / meteorology
| [1] |
Alland, J. J., Davis, C. A., 2022. Effects of Surface Fluxes on Ventilation Pathways and the Intensification of Hurricane Michael (2018). Journal of the Atmospheric Sciences, 79(4): 1211-1229. https://doi.org/10.1175/JAS⁃ D⁃21⁃0166.1 |
| [2] |
Alland, J. J., Tang, B. H., Corbosiero, K. L., et al., 2021. Combined Effects of Midlevel Dry Air and Vertical Wind Shear on Tropical Cyclone Development. Part II: Radial Ventilation. Journal of the Atmospheric Sciences, 78(3): 783-796. https://doi.org/10.1175/JAS⁃D⁃20⁃0055.1 |
| [3] |
Chen, G. H., Chou, C. A., 2014. Joint Contribution of Multiple Equatorial Waves to Tropical Cyclogenesis over the Western North Pacific. Monthly Weather Review, 142(1): 79-93. https://doi.org/10.1175/MWR⁃D⁃13⁃00207.1 |
| [4] |
Chen, G. H., Huang, R. H., 2009. Interannual Variations in Mixed Rossby⁃Gravity Waves and Their Impacts on Tropical Cyclogenesis over the Western North Pacific. Journal of Climate, 22(3): 535-549. https://doi.org/10.1175/2008jcli2221.1 |
| [5] |
Chen, H., Zhang, D. L., 2013. On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper⁃Level Warm Core. Journal of the Atmospheric Sciences, 70(1): 146-162. https://doi.org/10.1175/jas⁃d⁃12⁃062.1 |
| [6] |
Chen, S. S., Knaff, J. A., Marks, F. D. Jr, 2006. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Monthly Weather Review, 134(11): 3190-3208. https://doi.org/10.1175/mwr3245.1 |
| [7] |
Chen, X. M., Xue, M., Fang, J., 2018. Rapid Intensification of Typhoon Mujigae (2015) under Different Sea Surface Temperatures: Structural Changes Leading to Rapid Intensification. Journal of the Atmospheric Sciences, 75(12): 4313-4335. https://doi.org/10.1175/jas⁃d⁃18⁃0017.1 |
| [8] |
Corbosiero, K. L., Molinari, J., 2003. The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. Journal of the Atmospheric Sciences, 60(2): 366-376. https://doi.org/10.1175/1520⁃0469(2003)060<0366:TRBSMV>2.0.CO;2 |
| [9] |
Emanuel, K. A., Nolan, D. S., 2004. Tropical Cyclone Activity and the Global Climate System. 26th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society, Miami. |
| [10] |
Fischer, M. S., Tang, B. H., Corbosiero, K. L., et al., 2018. Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the North Atlantic and Eastern North Pacific. Monthly Weather Review, 146(4): 1133-1155. https://doi.org/10.1175/mwr⁃d⁃17⁃0239.1 |
| [11] |
Gao, S. Z., Lyu, X. Y., 2023. Evolution of Environmental Circulation and Dynamic and Thermodynamic Conditions before and after the Onset of Typhoon Rapid Intensification. Acta Meteorologica Sinica, 81(5): 702-716 (in Chinese with English abstract). |
| [12] |
Gray, W. M., 1968. Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96(10): 669-700. https://doi.org/10.1175/1520⁃0493(1968)096<0669:GVOTOO>2.0.CO;2 |
| [13] |
Gray, W. M., 1975. Tropical Cyclone Genesis in the Western North Pacific. Journal of the Meteorological Society of Japan. Ser. II, 55 : 465-482. https://doi.org/10.2151/jmsj1965.55.5_465 |
| [14] |
Hu, H., Duan, Y. H., 2016. Analysis of Environmental Variables of Rapidly Intensifying Tropical Cyclones in the South China Sea. Journal of Tropical Meteorology, 32(3): 299-310 (in Chinese with English abstract). |
| [15] |
Jiang, H. Y., 2012. The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner⁃Core Convection. Monthly Weather Review, 140(4): 1164-1176. https://doi.org/10.1175/mwr⁃d⁃11⁃00134.1 |
| [16] |
Judt, F., Rios⁃Berrios, R., Bryan, G. H., 2023. Marathon versus Sprint: Two Modes of Tropical Cyclone Rapid Intensification in a Global Convection⁃Permitting Simulation. Monthly Weather Review, 151(10): 2683-2699. https://doi.org/10.1175/mwr⁃d⁃23⁃0038.1 |
| [17] |
Kaplan, J., DeMaria, M., 2003. Large⁃Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather and Forecasting, 18(6): 1093-1108. https://doi.org/10.1175/1520⁃0434(2003)0181093:lcorit>2.0.co;2 |
| [18] |
Knaff, J. A., Sampson, C. R., Strahl, B. R., 2020. A Tropical Cyclone Rapid Intensification Prediction Aid for the Joint Typhoon Warning Center’s Areas of Responsibility. Weather and Forecasting, 35(3): 1173-1185. https://doi.org/10.1175/WAF⁃D⁃19⁃0228.1 |
| [19] |
Li, T., Ge, X. Y., Peng, M., et al., 2012. Dependence of Tropical Cyclone Intensification on the Coriolis Parameter. Tropical Cyclone Research and Review, 1(2): 242-253. https://doi.org/10.6057/2012TCRR02.04 |
| [20] |
Lyu, X. Y., Dong, L., Gao, S. Z., 2023. Analysis for the Rapid Intensification of Typhoon Mekkhala in Southern Taiwan Strait. Acta Meteorologica Sinica, 81(6): 866-878 (in Chinese with English abstract). |
| [21] |
Lyu, X. Y., Xu, Y. L., Huang, H. Q., 2021. Analysis on Environmental Factors of the Extremely Rapid Intensification of Typhoon “Rammasun” (1409) in the Northern South China Sea. Marine Forecasts, 38(3): 1-10 (in Chinese with English abstract). |
| [22] |
Mei, Y., Yu, J. H., 2016. Effect of Environment Field on Rapid Intensification Process of Tropical Cyclones over the Western North Pacific. Journal of the Meteorological Sciences, 36(6): 770-778 (in Chinese with English abstract). |
| [23] |
Nguyen, L. T., Rogers, R., Zawislak, J., et al., 2019. Assessing the Influence of Convective Downdrafts and Surface Enthalpy Fluxes on Tropical Cyclone Intensity Change in Moderate Vertical Wind Shear. Monthly Weather Review, 147(10): 3519-3534. https://doi.org/10.1175/mwr⁃d⁃18⁃0461.1 |
| [24] |
Qin, L., Wu, Q. S., Zeng, X. T., et al., 2019. Analysis on Cause of Rapid Intensification of Asymmetrical Typhoon Hato(1713) over the Offshore of China. Torrential Rain and Disasters, 38(3): 212-220 (in Chinese with English abstract). |
| [25] |
Rao, G. V., MacArthur, P. D., 1994. The SSM/I Estimated Rainfall Amounts of Tropical Cyclones and Their Potential in Predicting the Cyclone Intensity Changes. Monthly Weather Review, 122(7): 1568-1574. https://doi.org/10.1175/1520⁃0493(1994)122<1568:tserao>2.0.co;2 |
| [26] |
Rios⁃Berrios, R., Torn, R. D., 2017. Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear. Monthly Weather Review, 145(5): 1717-1738. https://doi.org/10.1175/MWR⁃D⁃16⁃0350.1 |
| [27] |
Ryglicki, D. R., Cossuth, J. H., Hodyss, D., et al., 2018. The Unexpected Rapid Intensification of Tropical Cyclones in Moderate Vertical Wind Shear. Part I: Overview and Observations. Monthly Weather Review, 146(11): 3773-3800. https://doi.org/10.1175/MWR⁃D⁃18⁃0020.1 |
| [28] |
Schubert, W. H., Hack, J. J., 1982. Inertial Stability and Tropical Cyclone Development. Journal of the Atmospheric Sciences, 39(8): 1687-1697. https://doi.org/10.1175/1520⁃0469(1982)039<1687:ISATCD>2.0.CO;2 |
| [29] |
Shi, D. L., Chen, G. H., 2021. The Implication of Outflow Structure for the Rapid Intensification of Tropical Cyclones under Vertical Wind Shear. Monthly Weather Review, 149(12): 4107-4127. https://doi.org/10.1175/MWR⁃D⁃21⁃0141.1 |
| [30] |
Shi, D. L., Chen, G. H., 2023. Modulation of Asymmetric Inner⁃Core Convection on Midlevel Ventilation Leading up to the Rapid Intensification of Typhoon Lekima (2019). Journal of Geophysical Research: Atmospheres, 128(7): e2022JD037952. https://doi.org/10.1029/2022JD037952 |
| [31] |
Shi, D. L., Ge, X. Y., Peng, M., et al., 2020. Characterization of Tropical Cyclone Rapid Intensification under Two Types of El Niño Events in the Western North Pacific. International Journal of Climatology, 40(4): 2359-2372. https://doi.org/10.1002/joc.6338 |
| [32] |
Tao, D. D., Zhang, F. Q., 2019. Evolution of Dynamic and Thermodynamic Structures before and during Rapid Intensification of Tropical Cyclones: Sensitivity to Vertical Wind Shear. Monthly Weather Review, 147(4): 1171-1191. https://doi.org/10.1175/mwr⁃d⁃18⁃0173.1 |
| [33] |
Wang, B., Murakami, H., 2020. Dynamic Genesis Potential Index for Diagnosing Present⁃Day and Future Global Tropical Cyclone Genesis. Environmental Research Letters, 15(11): 114008. https://doi.org/10.1088/1748⁃9326/abbb01 |
| [34] |
Wang, Z., 2018. What Is the Key Feature of Convection Leading up to Tropical Cyclone Formation? Journal of the Atmospheric Sciences, 75(5): 1609-1629. https://doi.org/10.1175/jas⁃d⁃17⁃0131.1 |
| [35] |
Yang, L., Fei, J. F., Huang, X. G., et al., 2017. Effects of Vertical Wind Shear and Tropical Cyclone Motion on Asymmetric Distribution of Convective Clouds in TCs over the Western North Pacific. Acta Meteorologica Sinica, 75(6): 943-954 (in Chinese with English abstract). |
| [36] |
Zagrodnik, J. P., Jiang, H. Y., 2014. Rainfall, Convection, and Latent Heating Distributions in Rapidly Intensifying Tropical Cyclones. Journal of the Atmospheric Sciences, 71(8): 2789-2809. https://doi.org/10.1175/jas⁃d⁃13⁃0314.1 |
| [37] |
Zawislak, J., Zipser, E. J., 2014. A Multisatellite Investigation of the Convective Properties of Developing and Nondeveloping Tropical Disturbances. Monthly Weather Review, 142(12): 4624-4645. https://doi.org/10.1175/MWR⁃D⁃14⁃00028.1 |
| [38] |
Zhang, F. Q., Tao, D. D., 2013. Effects of Vertical Wind Shear on the Predictability of Tropical Cyclones. Journal of the Atmospheric Sciences, 70(3): 975-983. https://doi.org/10.1175/JAS⁃D⁃12⁃0133.1 |
| [39] |
Zheng, X. L., Wu, L. G., Zhou, X. Y., et al., 2020. Comparison of inner⁃Core Structure Changes during Rapid Intensification between Typhoon Rammasun (2014) and Hurricane Wilma (2005). Journal of Tropical Meteorology, 36(2): 219-231 (in Chinese with English abstract). |
国家自然科学基金项目(42305004)
国家自然科学基金项目(42005007)
中国博士后科学基金项目(2023M743283)
中国地质大学(武汉)“地大学者”人才岗位科研启动经费(2022123)
/
| 〈 |
|
〉 |