戈壁近地表风压梯度对砾石覆盖度的分层响应
Stratified Response Characteristics of Near⁃Surface Wind Pressure Gradient to Gravel Coverage over Gobi
,
戈壁荒漠是沙尘跨境传输的重要策源区,其地表砾石覆盖度与近地表风压梯度的相互作用对沙尘释放机制具有重要影响.通过两相流风洞实验,模拟戈壁近地表风场特征,采用非线性回归模型及双因素分析揭示其调控机制.(1)风压增幅呈分层变化,风压梯度随高度上升呈线性或指数衰减;(2)砾石覆盖度显著调控风压梯度垂直分异;(3)来流风速直接控制风压梯度的强度大小,砾石覆盖度诱导能量吸收和动量传递.戈壁的地表异质性可有效影响风压梯度,近地表粗糙度与风场作用力存在动态博弈机制;地表砾石优先维持40%~50%覆盖度,可为优化沙尘释放模型及戈壁防风固沙措施提供理论依据.
The Gobi Desert is a critical source area for cross-border dust transport, where the interaction between surface gravel coverage and the near-surface wind pressure gradient exerts a significant influence on the dust emission mechanism. Through two-phase flow wind tunnel experiments, the near-surface wind field characteristics of the Gobi were simulated. Nonlinear regression models and two-factor analysis were employed to reveal the regulatory mechanisms. (1) The wind pressure increase exhibits stratified variation, with the wind pressure gradient decaying linearly or exponentially with increasing height. (2) Gravel coverage significantly regulates the vertical differentiation of the wind pressure gradient. (3) Incoming wind speeds directly controls the intensity of the wind pressure gradient, while gravel coverage induces energy absorption and momentum transfer. Surface heterogeneity in the Gobi Desert dynamically regulates wind pressure gradient through the interplay between near-surface roughness and wind forces. Maintaining optimal gravel coverage (40%-50%) effectively balances aeolian erosion control and momentum transfer, providing a mechanistic foundation for refining dust emission models and developing precision windbreak-sand stabilization strategies in arid ecosystems.
戈壁 / 风压梯度 / 砾石覆盖度 / 动态博弈 / 风蚀 / 风速.
Gobi / wind pressure gradient / gravel coverage / dynamic regulation / wind erosion / wind speed
| [1] |
Balme, M., Metzger, S., Towner, M., et al., 2003. Friction Wind Speeds in Dust Devils: A Field Study. Geophysical Research Letters, 30(16): 1830. https://doi.org/10.1029/2003GL017493 |
| [2] |
Chen, S. Y., Huang, J. P., Kang, L. T., et al., 2017a. Emission, Transport, and Radiative Effects of Mineral Dust from the Taklimakan and Gobi Deserts: Comparison of Measurements and Model Results. Atmospheric Chemistry and Physics, 17(3): 2401-2421. https://doi.org/10.5194/acp⁃17⁃2401⁃2017 |
| [3] |
Chen, S. Y., Huang, J. P., Li, J. X., et al., 2017b. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China Earth Sciences, 60(7): 1338-1355. https://doi.org/10.1007/s11430⁃016⁃9051⁃0 |
| [4] |
Chen, C., Xu, S. F., Wang, G. C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038 (in Chinese with English abstract). |
| [5] |
Clarke, R. H., Hess, G. D., 1975. On the Relation between Surface Wind and Pressure Gradient, Especially in Lower Latitudes. Boundary⁃Layer Meteorology, 9(3): 325-339. https://doi.org/10.1007/BF00230774 |
| [6] |
Dai, C. C., Zhong, C. T., Liu, X. D., et al., 2024. Genetic Model of Na⁃Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223 (in Chinese with English abstract). |
| [7] |
Fonseca, R., Francis, D., Nelli, N., et al., 2022. Climatology of the Heat Low and the Intertropical Discontinuity in the Arabian Peninsula. International Journal of Climatology, 42(2): 1092-1117. https://doi.org/10.1002/joc.7291 |
| [8] |
Francis, D., Chaboureau, J. P., Nelli, N., et al., 2021. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmospheric Research, 250: 105364. https://doi.org/10.1016/j.atmosres.2020.105364 |
| [9] |
Francis, D., Fonseca, R., Nelli, N., et al., 2023. On the Middle East’s Severe Dust Storms in Spring 2022: Triggers and Impacts. Atmospheric Environment, 296: 119539. https://doi.org/10.1016/j.atmosenv.2022.119539 |
| [10] |
Francis, D., Nelli, N., Fonseca, R., et al., 2022. The Dust Load and Radiative Impact Associated with the June 2020 Historical Saharan Dust Storm. Atmospheric Environment, 268: 118808. https://doi.org/10.1016/j.atmosenv.2021.118808 |
| [11] |
Gorchakov, G. I., Chkhetiani, O. G., Karpov, A. V., et al., 2024. Aerosol and Heat Turbulent Fluxes on a Desertified Area Upon the Intermittent Emission of Dust Aerosol. Doklady Earth Sciences, 515(1): 494-501. https://doi.org/10.1134/S1028334X23603024 |
| [12] |
Heywood, H., 1941. The Physics of Blown Sand and Desert Dunes. Nature, 148: 480-481. https://doi.org/10.1038/148480a0 |
| [13] |
Klose, M., Shao, Y. P., Li, X. L., et al., 2014. Further Development of a Parameterization for Convective Turbulent Dust Emission and Evaluation Based on Field Observations. Journal of Geophysical Research: Atmospheres, 119(17): 10441-10457. https://doi.org/10.1002/2014JD021688 |
| [14] |
Kok, J. F., Parteli, E. J. R., Michaels, T. I., et al., 2012. The Physics of Wind⁃Blown Sand and Dust. Reports on Progress in Physics Physical Society, 75(10): 106901. https://doi.org/10.1088/0034⁃4885/75/10/106901 |
| [15] |
Liang, L. H., Ma, S. X., Zhang, W. M., et al., 2025. Turbulent Structures at the Bottom of the Gobi Desert Boundary Layer and Their Impact on Aeolian Sand Transport and Dust Emission. Geomorphology, 472: 109593. https://doi.org/10.1016/j.geomorph.2025.109593 |
| [16] |
Liu, J., Wu, D. Y., Wang, T. S., et al., 2021. Interannual Variability of Dust Height and the Dynamics of Its Formation over East Asia. Science of the Total Environment, 751: 142288. https://doi.org/10.1016/j.scitotenv.2020.142288 |
| [17] |
Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2023. Key Geological Issues and Innovation Directions in Deep⁃Time Source⁃to⁃Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612 (in Chinese with English abstract). |
| [18] |
Nelli, N. R., Francis, D., Fonseca, R., et al., 2021. The Atmospheric Controls of Extreme Convective Events over the Southern Arabian Peninsula during the Spring Season. Atmospheric Research, 262: 105788. https://doi.org/10.1016/j.atmosres.2021.105788 |
| [19] |
Shao, Y. P., 2009. Physics and Modelling of Wind Erosion. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978⁃1⁃4020⁃8895⁃7 |
| [20] |
Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001 |
| [21] |
Shao, Y. P., Zhang, J., Ishizuka, M., et al., 2020. Dependency of Particle Size Distribution at Dust Emission on Friction Velocity and Atmospheric Boundary⁃Layer Stability. Atmospheric Chemistry and Physics, 20(21): 12939-12953. https://doi.org/10.5194/acp⁃20⁃12939⁃2020 |
| [22] |
Shen, Y. C., Wang, X. H., Cong, R. C., et al., 2013. Eco⁃Geographical Zoning of Deserts and Gobi in China. Journal of Arid Land Resources and Environment, 27(1): 1-13 (in Chinese with English abstract). |
| [23] |
Tan, L. H., Qu, J. J., Wang, T., et al., 2021. Field Observation Evidence for Kink Points in the Vertical Kinetic Energy Flux Profiles of Wind⁃Blown Sand over Gobi and Its Significance. Geophysical Research Letters, 48(3): e2020GL091224. https://doi.org/10.1029/2020GL091224 |
| [24] |
Tan, L. H., Zhang, W. M., An, Z. S., et al., 2012. Response of Wind Velocity Gradient at Boundary Layer to Gravel Coverage. Journal of Desert Research, 32(6): 1522-1527 (in Chinese with English abstract). |
| [25] |
Tan, L. H., Zhang, W. M., Qu, J. J., et al., 2013. Aeolian Sand Transport over Gobi with Different Gravel Coverages under Limited Sand Supply: A Mobile Wind Tunnel Investigation. Aeolian Research, 11: 67-74. https://doi.org/10.1016/j.aeolia.2013.10.003 |
| [26] |
Tan, S. C., Li, J. W., Che, H. Z., et al., 2017. Transport of East Asian Dust Storms to the Marginal Seas of China and the Southern North Pacific in Spring 2010. Atmospheric Environment, 148: 316-328. https://doi.org/10.1016/j.atmosenv.2016.10.054 |
| [27] |
Wang, X. M., Cai, D. W., Zhu, B. Q., et al., 2020. Dust⁃Sized Fractions from Dustfall and Physical Weathering in the Gobi Desert. Aeolian Research, 43: 100565. https://doi.org/10.1016/j.aeolia.2020.100565 |
| [28] |
Wang, X. M., Lang, L. L., Hua, T., et al., 2013. Gravel Cover of Gobi Desert and Its Significance for Wind Erosion: An Experimental Study. Journal of Desert Research, 33(2): 313-319 (in Chinese with English abstract). |
| [29] |
Weston, M. J., Temimi, M., Nelli, N. R., et al., 2021. On the Analysis of the Low⁃Level Double Temperature Inversion over the United Arab Emirates: A Case Study during April 2019. IEEE Geoscience and Remote Sensing Letters, 18(2): 346-350. https://doi.org/10.1109/LGRS.2020.2972597 |
| [30] |
Wu, S. H., Dai, G. Y., Long, W. R., et al., 2024. Observation Simulation and Metrics Demonstration of FY Third⁃Generation Polar⁃Orbiting Spaceborne Wind Measurement Lidar (Invited). Acta Optica Sinica, 44(18): 51-63 (in Chinese with English abstract). |
| [31] |
Xing, Y., Liu, B. L., Ma, T., et al., 2024. Wind Erosion and Dust Emission in the Core Area of Hexi Corridor⁃Taklimakan Desert Edge in 2000-2023. Journal of Desert Research, 44(6): 330-341 (in Chinese with English abstract). |
| [32] |
Yizhaq, H., Xu, Z. W., Ashkenazy, Y., 2020. The Effect of Wind Speed Averaging Time on the Calculation of Sand Drift Potential: New Scaling Laws. Earth and Planetary Science Letters, 544: 116373. https://doi.org/10.1016/j.epsl.2020.116373 |
| [33] |
Zhang, Z. C., Pan, K. J., Zhang, Y., et al., 2023. Sand Transport Characteristics above Gobi Surface during a Dust Storm in Northern China. Journal of Desert Research, 43(2): 130-138 (in Chinese with English abstract). |
国家自然科学基金项目(42261002)
国家自然科学基金项目(41861001)
高校青年科技英才项目(NJYT22039)
/
| 〈 |
|
〉 |