戈壁近地表风压梯度对砾石覆盖度的分层响应

廖承贤 ,  王海兵 ,  杨皓钦 ,  郭晓敏 ,  张雪

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3521 -3529.

PDF (2146KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3521 -3529. DOI: 10.3799/dqkx.2025.080

戈壁近地表风压梯度对砾石覆盖度的分层响应

作者信息 +

Stratified Response Characteristics of Near⁃Surface Wind Pressure Gradient to Gravel Coverage over Gobi

Author information +
文章历史 +
PDF (2196K)

摘要

戈壁荒漠是沙尘跨境传输的重要策源区,其地表砾石覆盖度与近地表风压梯度的相互作用对沙尘释放机制具有重要影响.通过两相流风洞实验,模拟戈壁近地表风场特征,采用非线性回归模型及双因素分析揭示其调控机制.(1)风压增幅呈分层变化,风压梯度随高度上升呈线性或指数衰减;(2)砾石覆盖度显著调控风压梯度垂直分异;(3)来流风速直接控制风压梯度的强度大小,砾石覆盖度诱导能量吸收和动量传递.戈壁的地表异质性可有效影响风压梯度,近地表粗糙度与风场作用力存在动态博弈机制;地表砾石优先维持40%~50%覆盖度,可为优化沙尘释放模型及戈壁防风固沙措施提供理论依据.

Abstract

The Gobi Desert is a critical source area for cross-border dust transport, where the interaction between surface gravel coverage and the near-surface wind pressure gradient exerts a significant influence on the dust emission mechanism. Through two-phase flow wind tunnel experiments, the near-surface wind field characteristics of the Gobi were simulated. Nonlinear regression models and two-factor analysis were employed to reveal the regulatory mechanisms. (1) The wind pressure increase exhibits stratified variation, with the wind pressure gradient decaying linearly or exponentially with increasing height. (2) Gravel coverage significantly regulates the vertical differentiation of the wind pressure gradient. (3) Incoming wind speeds directly controls the intensity of the wind pressure gradient, while gravel coverage induces energy absorption and momentum transfer. Surface heterogeneity in the Gobi Desert dynamically regulates wind pressure gradient through the interplay between near-surface roughness and wind forces. Maintaining optimal gravel coverage (40%-50%) effectively balances aeolian erosion control and momentum transfer, providing a mechanistic foundation for refining dust emission models and developing precision windbreak-sand stabilization strategies in arid ecosystems.

Graphical abstract

关键词

戈壁 / 风压梯度 / 砾石覆盖度 / 动态博弈 / 风蚀 / 风速.

Key words

Gobi / wind pressure gradient / gravel coverage / dynamic regulation / wind erosion / wind speed

引用本文

引用格式 ▾
廖承贤,王海兵,杨皓钦,郭晓敏,张雪. 戈壁近地表风压梯度对砾石覆盖度的分层响应[J]. 地球科学, 2025, 50(09): 3521-3529 DOI:10.3799/dqkx.2025.080

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

戈壁荒漠作为北半球最大的干旱区景观之一,横跨中国北部及蒙古南部,总面积达57万平方公里(申元村等, 2013).戈壁独特的地理环 境——平坦的地形、稀少的植被覆盖以及丰富的松散表层沉积物,使其成为亚洲沙尘暴的主要发源地(Liu et al., 2021).每年春季,强风作用致使沙尘灾害频发,戈壁地表沙尘经垂直对流上升至高空后,随西风带跨境传输至东亚、北美甚至北极地区(Tan et al., 2017).据估算,戈壁沙尘物质对东亚地区大气气溶胶负荷的贡献率高达31%~35%(Chen et al., 2017a,2017b),其沉降过程不仅影响区域气候(通过改变辐射平衡),还对冰川消融、海洋生态系统和人类健康产生深远影响(Shao et al., 2011).近年来,随着全球气候变化加剧,戈壁地区的风蚀活动呈现增强趋势(邢瑜等, 2024),解析其地表动力机制成为国际风沙物理学研究的热点问题.

沙尘释放的本质是地表颗粒在风力作用下克服粘结力与重力的过程,这一过程的核心驱动力源于近地表风压梯度的空间异质性变化(Heywood, 1941).风压梯度(wind pressure gradient,简称WPG)被定义为垂直或水平方向上的特征风压变化,其空间异质性直接影响沙尘的起动与扩散(Balme et al, 2003).有研究表明,风压梯度随高度衰减显著(Kok et al., 2012),主要受到地表粗糙度与起动风速调控(Shao, 2009Shao et al., 2020).以干旱、半干旱区的戈壁为例,其地表覆盖的砾石通过直接改变地表剪切应力分布(Wang et al., 2020Tan et al., 2021),进而调控风压梯度的垂直分异.然而,现有研究多聚焦于风压对风蚀总量的线性抑制效应,对在混合粒径沙尘起动中,风压非线性响应机制及垂直分异规律仍缺乏深入分析.在近地表研究中,当局部风速值超过临界颗粒起动阈值时,风压作用下的湍流涡旋破碎可显著提升细颗粒(<50 μm)的垂向通量(Klose et al., 2014Gorchakov et al., 2024Liang et al., 2025).当研究范围进一步扩大到景观尺度时,风压梯度能够改变区域的气候过程(如沙尘天气),因此人们大多利用遥感风蚀模型(如WEPS、RWEQ)来进行反映(Nelli et al., 2021Weston et al., 2021Fonseca et al., 2022Francis et al., 2022,2023);但此类模型通常假设地表呈均一性,且风压梯度随高度呈均匀衰减.虽然卫星遥感能大范围监测沙尘暴,但其空间分辨率(千米级)难以捕捉近地表(米级)风压梯度的微尺度特征;且高空尘埃层的存在,使得遥感数据对地表短波辐射通量的低估可达300 W/m²,导致无法准确描述近地表过程,尤其是非均一性地表的风压结构及沙尘释放通量的系统性偏差(Francis et al., 2021; Weston et al., 2021; 吴松华等, 2024).

戈壁地表的异质性体现为砾石、沙粒、粉尘与矿物的混合分布(陈超等, 2021; 戴朝成等, 2024).其地表砾石所形成的复杂粗糙元阵列,可有效影响近地层风场结构及地质沉积过程(Tan et al., 2013; 刘强虎等, 2023).尽管风作为沙尘输运的核心驱动力已被广泛认知(王训明等, 2013; Yizhaq et al., 2020),但现有研究对砾石覆盖度与风速协同调控风压梯度的非线性机制仍有待进一步阐释;且地表均一化假设简化了风压梯度与地表粗糙度的交互作用,忽略了砾石覆盖度与风速的非线性耦合效应,导致复杂地表条件下风蚀通量的释放量被低估.因此,量化近地表小尺度风压梯度的垂直分异特征,尤其是砾石覆盖度与风速的协同作用,对修正中(大)尺度沙尘模型的参数化方案至关重要.针对上述问题,本研究通过可控风洞实验,模拟戈壁近地表动力过程,结合双因素方差分析与非线性回归模型,系统发掘砾石覆盖度(30%~60%)与风速(6~22 m/s)对风压梯度的协同调控机制.实验采用高精度风压传感器(分辨率 0.01 Pa),分层测量近地表的梯度分布,揭示低层能量汇与中层动量源的动态博弈规律.研究结果可为戈壁防风工程的差异化管理提供科学依据,亦可直接应用于修正中尺度沙尘模型的近地表参数化方案.

1 研究方法

1.1 两相流风洞实验

风洞实验于宁夏沙坡头沙漠生态系统国家野外科学观测研究站的风沙环境风洞实验室进行.风洞结构为直流闭吹式,由动力部分、整流部分、实验部分和扩散部分组成.风洞总长38 m,实验段长21 m,面积为1.2 m×1.2 m(图1).实验床面以模拟戈壁自然条件的方式铺设,为使表面边界层充分发展,铺设长度为6 m.模拟床面由一层直径为0.5~5.0 cm的砾石、粉尘和自然沙组成.每组床面粉尘及沙粒为定值,混合搅拌后,按床面占比设定砾石覆盖率为30%、40%、50%和60%.同一砾石覆盖度,不同风速的实验前,都必须将床面整平,以确保实验的一致性,同时保证床面沙尘的充分供应;进行不同砾石覆盖度实验时,则应铲除上一覆盖度床面,重新配置床面后铺设整平,重复不同风速实验.来流风速由计算机控制台设置为6 m/s、10 m/s、14 m/s、18 m/s和22 m/s,与戈壁长期气象观测的数据范围一致(张正偲等, 2023),以最大限度的还原戈壁地表风速特征;测量仪器为风压式毕托管(校准标准为ISO3966:2008),分辨率0.01 Pa,放置于水平来流风的床面下风处;当床面上风向总风速毕托管的流场稳定后,每0.5 s记录一组风压数据,风压结果取平均值,毕托管测量高度范围为0.002~0.500 m.

1.2 分析方法

由于沙粒运动最剧烈的范围集中在0~0.1 m,且现有风沙观测中常将风沙流垂直高度层分为粗糙亚层(<0.03 m)和惯性亚层(>0.03 m)(谭立海等, 2012).因此根据本文垂直风压结构的变化,将垂直高度差Δh划分为0.025 m(0.002~0.030 m)的剪切层、0.09 m(0.03~0.12 m)的过渡层和0.38 m(0.12~0.50 m)的惯性层,其中剪切层和过渡层为沙粒的剧烈运动区.数据分析以风压梯度(Clarke and Hess, 1975)及相对贡献率为切入口,旨在深入解析戈壁近地表风压的分层作用机制.之后通过来流风速与砾石覆盖度的双因素分析,求解两个变量对一个连续型因变量的影响,最后量化各因素之间的交互作用及其显著性,主要计算公式为:

PGradientPh
λ=PLocal/PTotal
        SST=i=1n(Pi-P¯)
        SSB=j=1knj(P¯j-P¯)2
        SSW=j=1ki=1nj(Pij-P¯j)2
        SST=SSB+SSW
        dfTotal=N-1,
        dfbetween=k-1,
        dfwithin=N-k
        MSbetween=SSB/dfbetween
        MSwithin=SSW/dfwithin
        F=MSbetween/MSwithin

其中,PGradient(单位Pa/m)为风压梯度,ΔP(单位Pa)为垂直高度差Δh(单位m)对应的风压差;λ为风压梯度相对贡献率,PLocal(单位 Pa/m)为总风压梯度PTotal(单位Pa/m)对应的局部风压梯度;SST(总平方和),为所有观测值与总体平均值之差的平方和.其中Pi 是第i个观测值,P¯是所有观测值的平均值;SSB(组间平方和)为各组平均值与总体平均值之差的平方和乘以每组内的观测数,其中njP¯j是第j组的样本数量和平均数,k是组的数量;SSW(组内平方和)为各组内部观测值与其组平均值之差的平方和,其中Pij 是第j组中的第i个观测值;dfTotaldfbetweendfwithin为自由度;MS为均方;F为统计量.

2 结果与分析

2.1 不同风速及砾石覆盖度下的垂直风压结构

风洞实验结果表明,近地表风压随高度增加呈现显著的非线性增长趋势,垂直分布呈现显著的“低层陡增、中层缓增、高层趋稳”规律(图2),其具体特征受砾石覆盖度(30%~60%)与风速(6~22 m/s)的协同调控.

以30%覆盖度为例,低风速(6 m/s)时,0.002~0.030 m风压从0.002 m处的1.72 Pa增至0.03 m处的5 Pa(增幅191%),0.03~0.12 m从5 Pa增至10.48 Pa(增幅110%),0.12~0.50 m仅从10.48 Pa增至12.36 Pa(增幅18%);当风速提升至22 m/s时,0.002~0.030 m风压从31.02 Pa剧增至80.04 Pa(增幅158%),0.12 m持续增长至 165.72 Pa(增幅107%),0.5 m达172.96 Pa(增幅4%).40%~60%覆盖度条件下,垂直分异规律与30%覆盖度一致,但风压增幅范围显著扩大:6 m/s,0.002~0.03 m的增幅范围为808%~ 1 472%;0.03~0.12 m增幅97%~137%;0.12~0.50 m增幅15%~24%;风速增至22 m/s后,0.002~0.030 m增幅为374%~1 067%,0.03~0.12 m增幅达102%~148%,0.12~0.50 m增幅仅为9.1%~13.4%.综上,垂直风压增幅均表现为(0.002~0.030 m)时>(0.03~0.12 m)时>(0.12~0.50 m)时,表明能量交互集中于近地表0~0.12 m,而0.03 m以下交互作用最强.

因此风压垂直结构可划分为3层动力学分区:(1)剪切层(0.002~0.030 m,Δh=0.025 m):风压急剧跃升(平均风压由5.63 Pa增至32.60 Pa,平均增幅479%);(2)过渡层(0.03~0.12 m,Δh=0.09 m):风压增速逐渐放缓(平均风压由32.60 Pa增至72.99 Pa,平均增幅124%);(3)惯性层(0.12~0.50 m,Δh=0.38 m):风压趋于稳定(平均风压由72.99 Pa增至81.28 Pa,平均增幅11%).

2.2 风速对风压梯度的影响

风压梯度是由于空间垂直或水平差异而产生的局部变化.同一条件下,当风压梯度较大时,气流变化越剧烈,受地表影响越大,水平输运作用减小;反之则气流变化平缓,受地表影响越小,水平输运作用增强,故可作为气流空间异质性的量化指标.基于此,从图3中可以看出,无论砾石覆盖度如何变化,风压梯度在任何高度差Δh下都随着风速的提升而提升,主要表现为30%~60%砾石覆盖度的近地表梯度均值998.46 Pa/m(22 m/s)>695.12 Pa/m(18 m/s)>424.94 Pa/m(14 m/s)>195.83 Pa/m(10 m/s)>75.22 Pa/m(6 m/s);垂直方向上,随着高度的上升,风压梯度呈线性降低(砾石覆盖度>50%呈指数衰减),即高度差Δh:0.025 m时(剪切层)>0.09 m时(过渡层)>0.38 m时(惯性层).其中,剪切层梯度值为各层最高,范围为117.14~2 469.29 Pa/m;较过渡层的60.89~1 031.22 Pa/m和惯性层的4.58~ 53.89 Pa/m分别高出1~2个数量级,这种垂直分布特征与近地表剪切应力集中及湍流猝发事件的能量耗散机制密切相关,符合边界层动量传输理论.

从风速调控机制上看,当来流风速达22 m/s时,剪切层的风压梯度值较6 m/s时(1 750.71~ 2 030.71 Pa/m vs. 117.14~168.21 Pa/m)增长12~14倍,表明高速气流受近地表的黏性阻滞作用,显著放大了粗糙元影响下的微尺度涡旋,增强了风压梯度.相对贡献率分布呈现出随高度变化的波动性;剪切层贡献率稳定维持于0.64~0.73区间,表现为随砾石覆盖度的提升而提升,凸显了其是风沙输移的核心注入层;而过渡层贡献率为0.24~0.35,且随风速提升波动更为显著,即标准偏差0.034(过渡层)>0.031(剪切层)>0.005(惯性层);且砾石覆盖度提升后,其梯度相对贡献率降低(由0.33~0.35降至0.24~0.28),与剪切层(0.025 m的0.64~0.66增至0.70~0.73)相反,暗示过渡层气流更倾向于动量传递而非能量耗散.这一现象可解释为能量从大尺度涡向小尺度涡的级串过程,在近地层形成能量“汇”,导致剪切层贡献率占据绝对优势;而过渡层受砾石粗糙元影响,形成上绕流,涡旋尺度增大,能量通过惯性级串向上层传递,发展为动量“源”,最终表现为剪切层相对贡献率增强与过渡层动量输运效率提升(梯度相对贡献率降低)的协同效应.

2.3 砾石对风压梯度的影响

砾石覆盖度对风压梯度的影响主要体现在地表异质性的变化上,其可显著调控风压梯度的垂直分异与能量分配.由图4可知,砾石覆盖度的增加显著提升了近地表剪切层的风压梯度;其中,6~14 m/s呈近线性上升,18~22 m/s则呈现指数上升,砾石覆盖度每增加10%,风压梯度平均提升7%~17%.而随着高度增加至过渡层,风压梯度随砾石覆盖度的变化却变得相对平缓,尤其在10~14 m/s的较大风速下,覆盖度>40%后便出现了连续降低趋势 (6 m/s为覆盖度>50%时出现降低),即30%覆盖度增至40%覆盖度时,风压梯度同比升高了7.36%、17.08%;而覆盖度由40%升至60%时,则持续同比降低(先降低2.57%、7.32%,后降低11.20%、17.60%);大风速(18~22 m/s)时则呈波动降低的现象,表现为最大同比降低>15%.惯性层则相对变化并不显著.该现象说明,异质性砾石地表可有效影响过渡层以下的区域,是砾石覆盖区的效应边界层;剪切层范围内风压梯度随砾石覆盖度的增加而增加,该区域地表粗糙度的提升,可有效抑制近床面的沙尘释放;而过渡层范围内,砾石防护作用减缓,甚至随着砾石覆盖度的增加,在10~22 m/s风速下出现持续降低或波动降低的反作用趋势,有利于风力水平传输及沙尘的排放;更高范围内(惯性层)的风压梯度虽出现了波动,但相较前者并不明显.

2.4 双因素分析

图5通过来流风速、砾石覆盖度对风压梯度进行三维映射,其非线性回归分析模型揭示了砾石覆盖度(C)与来流风速(V)对风压梯度(PGradient)的协同调控机制.其数学拟合模型表现出显著的空间差异性(剪切层R²=0.992 9,过渡层R²=0.992 0,惯性层R²=0.867 4).PGradient随来流风速呈现典型的二次增长模式,反映风速对梯度的非线性自增强效应.剪切层风速平方项系数(3.66)显著大于盖度项(0.27),验证了流体惯性力对梯度强度的主导作用.值得注意的是,交叉项系数表征风速与盖度的协同放大或减小作用.如剪切层中CV为1.34,揭示了两参数的协同放大效应.过渡层风压梯度呈现非线性衰减特征,其数学模型PGradient=-487.47+19.85C+14.52V-0.21C²+1.73V²-0.16CV表现出独特的参数耦合关系;二次项系数分析显示,盖度平方项(-0.21)与交叉项(-0.16)的负向作用抵消了线性项的增益效应,表明当盖度超过45%时,砾石覆盖形成的动量传递机制开始主导流场重构.惯性层PGradient标准差与控制参数间存在复杂非线性关系,致使数学拟合模型R2(0.867 4)<0.99,皆低于剪切层和过渡层;主要原因在于,惯性层远离地表,其风压梯度逐步受大尺度湍流主导,参数间的物理交互作用更为复杂,导致模型拟合度降低;惯性层模型PGradient=-2.05+0.33C-1.43V-0.01C²+0.05V²+0.05CV中交叉项系数(0.05)表明,高风速(>18 m/s)与高盖度(>40%)组合会加剧其脉动强度.这种脉动增强现象与地表盖度变化密切相关.因此从各层风压梯度中可以看出,风压梯度的空间尺度变化,受地表粗糙度要素与流体动力参数相互耦合的影响,整体呈风速调控风压梯度大小,砾石覆盖度调控梯度波动.

基于上述分异特征,进行双因素分析以评估来流风速、砾石覆盖度对风压梯度调控的显著程度(P<0.05;F crit为F检验的临界值)(表1).在剪切层,砾石覆盖度对风压梯度的主效应极显著(F=136.20,P=6.88×10-10),其平方和(SS=9.12×106)占总变异的95.3%,表明地表粗糙度直接主导剪切应力的空间分异.相较而言,来流风速的主效应虽显著(F=4.95,P=0.018),但贡献率仅占2.6%,印证剪切层能量分配受地表异质性调制为主.过渡层:砾石覆盖度的调控作用进一步强化(F=451.82,P=5.73×10-13SS占比98.5%),反映粗糙元绕流对湍流动能再分配,引发高覆盖度下遮蔽效应导致能量垂向传递受阻,但水平输送增强;来流风速的影响仍微弱(F=4.91,P=0.019),其贡献率不足1%,凸显过渡层动力过程受地表变化最为敏感.惯性层:砾石覆盖度的主效应显著减弱(F=15.35,P=1.15×10-4SS占比72.3%),而来流风速的作用相对提升(F=3.85, P=0.039),贡献率达13.6%,表明高层能量分配逐渐由大尺度湍流主导,盖度影响开始退居次要.

三维映射模型(图5)与双因素分析(表1)的协同研究表明,砾石覆盖度与来流风速对风压梯度的调控具有空间层级依赖性.在剪切层和过渡层,盖度通过改变主导剪切分布,致使来流风速对风压梯度大小的调控受制于地表异质性;而随着高度上升至惯性层,大尺度湍流的惯性力作用增强,风速贡献率提升.而盖度通过调控湍流脉动维持对风压梯度波动的控制,二者协同作用体现为模型交叉项系数(CV)对脉动强度的显著影响.该垂直分异特征证实了地表粗糙度与流体惯性力的动态博弈机制:来流风速为控制风压梯度强度变化的直接变量,垂直近地场以覆盖度诱导的能量吸收和动量传递为主导,远场则受惯性输运控制.

3 结论

本文通过风洞模拟戈壁地表,对不同砾石覆盖度及风速下的风压梯度进行了实验,发现风压分层增幅,风压梯度随高度上升呈线性或指数衰减,近地表剪切层因剪切应力集中与湍流能量耗散,梯度值较0.12~0.50 m层高1~2个数量级,其相对贡献率稳定维持于64%~73%,表明该层是风沙输移的核心能量输入区(汇);砾石覆盖度通过改变地表粗糙度显著影响风压梯度空间分布,即剪切层覆盖度每增加10%,风压梯度平均提升7%~17%;而过渡层在覆盖度>40%时梯度值同比降低7%~18%,揭示砾石对沙尘水平传输存在“抑制‒促进”的阈值效应(源);剪切层风压梯度受砾石覆盖度主导,风速仅通过惯性力放大梯度强度;惯性层则转为来流风速控制,且高覆盖度 (>40%)与高风速(>18 m/s)组合加剧湍流脉动,表明地表异质性与大尺度湍流的动态博弈机制.

研究证实砾石覆盖度对风压梯度的非线性调控规律,说明戈壁的地表异质性可有效影响风压梯度,其在一定空间内既是沙尘汇,又是沙尘源.砾石覆盖度并非越大越好,建议戈壁防风工程实施分层优化策略,近地表砾石优先维持40%~50%覆盖度以抑制剪切层能量输入,同时避免过渡层动量源效应增强.研究成果可为非均质地表风蚀模型的参数化提供实验支撑,适用于干旱区戈壁地表的防风设计.

参考文献

[1]

Balme, M., Metzger, S., Towner, M., et al., 2003. Friction Wind Speeds in Dust Devils: A Field Study. Geophysical Research Letters, 30(16): 1830. https://doi.org/10.1029/2003GL017493

[2]

Chen, S. Y., Huang, J. P., Kang, L. T., et al., 2017a. Emission, Transport, and Radiative Effects of Mineral Dust from the Taklimakan and Gobi Deserts: Comparison of Measurements and Model Results. Atmospheric Chemistry and Physics, 17(3): 2401-2421. https://doi.org/10.5194/acp⁃17⁃2401⁃2017

[3]

Chen, S. Y., Huang, J. P., Li, J. X., et al., 2017b. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China Earth Sciences, 60(7): 1338-1355. https://doi.org/10.1007/s11430⁃016⁃9051⁃0

[4]

Chen, C., Xu, S. F., Wang, G. C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038 (in Chinese with English abstract).

[5]

Clarke, R. H., Hess, G. D., 1975. On the Relation between Surface Wind and Pressure Gradient, Especially in Lower Latitudes. Boundary⁃Layer Meteorology, 9(3): 325-339. https://doi.org/10.1007/BF00230774

[6]

Dai, C. C., Zhong, C. T., Liu, X. D., et al., 2024. Genetic Model of Na⁃Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223 (in Chinese with English abstract).

[7]

Fonseca, R., Francis, D., Nelli, N., et al., 2022. Climatology of the Heat Low and the Intertropical Discontinuity in the Arabian Peninsula. International Journal of Climatology, 42(2): 1092-1117. https://doi.org/10.1002/joc.7291

[8]

Francis, D., Chaboureau, J. P., Nelli, N., et al., 2021. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmospheric Research, 250: 105364. https://doi.org/10.1016/j.atmosres.2020.105364

[9]

Francis, D., Fonseca, R., Nelli, N., et al., 2023. On the Middle East’s Severe Dust Storms in Spring 2022: Triggers and Impacts. Atmospheric Environment, 296: 119539. https://doi.org/10.1016/j.atmosenv.2022.119539

[10]

Francis, D., Nelli, N., Fonseca, R., et al., 2022. The Dust Load and Radiative Impact Associated with the June 2020 Historical Saharan Dust Storm. Atmospheric Environment, 268: 118808. https://doi.org/10.1016/j.atmosenv.2021.118808

[11]

Gorchakov, G. I., Chkhetiani, O. G., Karpov, A. V., et al., 2024. Aerosol and Heat Turbulent Fluxes on a Desertified Area Upon the Intermittent Emission of Dust Aerosol. Doklady Earth Sciences, 515(1): 494-501. https://doi.org/10.1134/S1028334X23603024

[12]

Heywood, H., 1941. The Physics of Blown Sand and Desert Dunes. Nature, 148: 480-481. https://doi.org/10.1038/148480a0

[13]

Klose, M., Shao, Y. P., Li, X. L., et al., 2014. Further Development of a Parameterization for Convective Turbulent Dust Emission and Evaluation Based on Field Observations. Journal of Geophysical Research: Atmospheres, 119(17): 10441-10457. https://doi.org/10.1002/2014JD021688

[14]

Kok, J. F., Parteli, E. J. R., Michaels, T. I., et al., 2012. The Physics of Wind⁃Blown Sand and Dust. Reports on Progress in Physics Physical Society, 75(10): 106901. https://doi.org/10.1088/0034⁃4885/75/10/106901

[15]

Liang, L. H., Ma, S. X., Zhang, W. M., et al., 2025. Turbulent Structures at the Bottom of the Gobi Desert Boundary Layer and Their Impact on Aeolian Sand Transport and Dust Emission. Geomorphology, 472: 109593. https://doi.org/10.1016/j.geomorph.2025.109593

[16]

Liu, J., Wu, D. Y., Wang, T. S., et al., 2021. Interannual Variability of Dust Height and the Dynamics of Its Formation over East Asia. Science of the Total Environment, 751: 142288. https://doi.org/10.1016/j.scitotenv.2020.142288

[17]

Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2023. Key Geological Issues and Innovation Directions in Deep⁃Time Source⁃to⁃Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612 (in Chinese with English abstract).

[18]

Nelli, N. R., Francis, D., Fonseca, R., et al., 2021. The Atmospheric Controls of Extreme Convective Events over the Southern Arabian Peninsula during the Spring Season. Atmospheric Research, 262: 105788. https://doi.org/10.1016/j.atmosres.2021.105788

[19]

Shao, Y. P., 2009. Physics and Modelling of Wind Erosion. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978⁃1⁃4020⁃8895⁃7

[20]

Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001

[21]

Shao, Y. P., Zhang, J., Ishizuka, M., et al., 2020. Dependency of Particle Size Distribution at Dust Emission on Friction Velocity and Atmospheric Boundary⁃Layer Stability. Atmospheric Chemistry and Physics, 20(21): 12939-12953. https://doi.org/10.5194/acp⁃20⁃12939⁃2020

[22]

Shen, Y. C., Wang, X. H., Cong, R. C., et al., 2013. Eco⁃Geographical Zoning of Deserts and Gobi in China. Journal of Arid Land Resources and Environment, 27(1): 1-13 (in Chinese with English abstract).

[23]

Tan, L. H., Qu, J. J., Wang, T., et al., 2021. Field Observation Evidence for Kink Points in the Vertical Kinetic Energy Flux Profiles of Wind⁃Blown Sand over Gobi and Its Significance. Geophysical Research Letters, 48(3): e2020GL091224. https://doi.org/10.1029/2020GL091224

[24]

Tan, L. H., Zhang, W. M., An, Z. S., et al., 2012. Response of Wind Velocity Gradient at Boundary Layer to Gravel Coverage. Journal of Desert Research, 32(6): 1522-1527 (in Chinese with English abstract).

[25]

Tan, L. H., Zhang, W. M., Qu, J. J., et al., 2013. Aeolian Sand Transport over Gobi with Different Gravel Coverages under Limited Sand Supply: A Mobile Wind Tunnel Investigation. Aeolian Research, 11: 67-74. https://doi.org/10.1016/j.aeolia.2013.10.003

[26]

Tan, S. C., Li, J. W., Che, H. Z., et al., 2017. Transport of East Asian Dust Storms to the Marginal Seas of China and the Southern North Pacific in Spring 2010. Atmospheric Environment, 148: 316-328. https://doi.org/10.1016/j.atmosenv.2016.10.054

[27]

Wang, X. M., Cai, D. W., Zhu, B. Q., et al., 2020. Dust⁃Sized Fractions from Dustfall and Physical Weathering in the Gobi Desert. Aeolian Research, 43: 100565. https://doi.org/10.1016/j.aeolia.2020.100565

[28]

Wang, X. M., Lang, L. L., Hua, T., et al., 2013. Gravel Cover of Gobi Desert and Its Significance for Wind Erosion: An Experimental Study. Journal of Desert Research, 33(2): 313-319 (in Chinese with English abstract).

[29]

Weston, M. J., Temimi, M., Nelli, N. R., et al., 2021. On the Analysis of the Low⁃Level Double Temperature Inversion over the United Arab Emirates: A Case Study during April 2019. IEEE Geoscience and Remote Sensing Letters, 18(2): 346-350. https://doi.org/10.1109/LGRS.2020.2972597

[30]

Wu, S. H., Dai, G. Y., Long, W. R., et al., 2024. Observation Simulation and Metrics Demonstration of FY Third⁃Generation Polar⁃Orbiting Spaceborne Wind Measurement Lidar (Invited). Acta Optica Sinica, 44(18): 51-63 (in Chinese with English abstract).

[31]

Xing, Y., Liu, B. L., Ma, T., et al., 2024. Wind Erosion and Dust Emission in the Core Area of Hexi Corridor⁃Taklimakan Desert Edge in 2000-2023. Journal of Desert Research, 44(6): 330-341 (in Chinese with English abstract).

[32]

Yizhaq, H., Xu, Z. W., Ashkenazy, Y., 2020. The Effect of Wind Speed Averaging Time on the Calculation of Sand Drift Potential: New Scaling Laws. Earth and Planetary Science Letters, 544: 116373. https://doi.org/10.1016/j.epsl.2020.116373

[33]

Zhang, Z. C., Pan, K. J., Zhang, Y., et al., 2023. Sand Transport Characteristics above Gobi Surface during a Dust Storm in Northern China. Journal of Desert Research, 43(2): 130-138 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42261002)

国家自然科学基金项目(41861001)

高校青年科技英才项目(NJYT22039)

AI Summary AI Mindmap
PDF (2146KB)

106

访问

0

被引

详细

导航
相关文章

AI思维导图

/