北太平洋急流对北美冬季温度偶极子的影响机制
Mechanisms of North Pacific Jet on Winter North American Temperature Dipole
,
为理解北美冬季“西暖‒东冷”温度偶极子的成因,基于再分析数据对影响北美温度的大气环流、西风急流和海温背景进行分析.结果表明,北美温度偶极子主要受正位相的太平洋北美遥相关(PNA+)环流影响,弱的西风急流下北美温度偶极子最强.此外,北太平洋海温通过调制急流变化,对PNA+期间的北美温度偶极子结构和强度产生影响.在正位相太平洋年代际振荡冬季,中纬度西风急流偏南,PNA+环流在北美地区呈经向结构,引起“西北暖‒东南冷”温度异常.而正位相维多利亚海温模态有利于中纬度西风急流减弱,导致PNA+在北美西部的高压系统向西移动,同时东部低压持续存在,形成水平波列结构,进而加剧“西暖‒东冷”温度偶极子异常.
To understand the causes of extreme temperature dipoles in North America during winter, we analyse atmospheric circulation, the westerly jet stream, and the sea surface temperature (SST) background based on reanalysis data. Our study reveals the role of the positive Pacific-North American pattern (PNA+) in driving sub-seasonal temperature dipoles on North America. The results indicate that a weakened North Pacific jet favors the formation of the temperature dipole. Additionally, North Pacific SSTs can modulate the structure and strength of the temperature dipole by influencing the jet stream. Specifically, during the positive phase of the Pacific decadal oscillation (PDO) in winter, a meridionally oriented wave train structure related to PNA+ events is more easily formed, with the North Pacific westerly jet stream shifting southward. This structure contributes to a “warm northwest-cold southeast” temperature anomaly pattern on North America. Conversely, during the positive phase of the Victoria SST pattern, the mid-latitude jet stream is weakened. As a result, the high-pressure system associated with PNA+ shifts westward, while the eastern low-pressure system persists. This forms a horizontal wave train structure, which strengthens the intensity of the “west warm-east cold” surface air temperature dipole anomaly on North America associated with PNA+.
北美温度偶极子 / 北太平洋西风急流 / 太平洋北美遥相关 / 太平洋年代际振荡 / 维多利亚模态 / 气候学 / 极端天气.
North American temperature dipole / North Pacific jet / Pacific⁃North American pattern / Pacific decadal oscillation / Victoria mode / climatology / extreme weather
| [1] |
Baxter, S., Nigam, S., 2015. Key Role of the North Pacific Oscillation⁃West Pacific Pattern in Generating the Extreme 2013/14 North American Winter. Journal of Climate, 28(20): 8109-8117. https://doi.org/10.1175/JCLI⁃D⁃14⁃00726.1 |
| [2] |
Ding, R., Li, J., Tseng, Y. H., et al., 2015. The Victoria Mode in the North Pacific Linking Extratropical Sea Level Pressure Variations to ENSO. Journal of Geophysical Research: Atmospheres, 120(1): 27-45. https://doi.org/10.1002/2014JD022221 |
| [3] |
Franzke, C., Feldstein, S. B., 2005. The Continuum and Dynamics of Northern Hemisphere Teleconnection Patterns. Journal of the Atmospheric Sciences, 62(9): 3250-3267. https://doi.org/10.1175/jas3536.1 |
| [4] |
Franzke, C., Feldstein, S. B., Lee, S., 2011. Synoptic Analysis of the Pacific⁃North American Teleconnection Pattern. Quarterly Journal of the Royal Meteorological Society, 137(655): 329-346. https://doi.org/10.1002/qj.768 |
| [5] |
Ge, Y., Luo, D. H., 2023. Impacts of the Different Types of El Niño and PDO on the Winter Sub⁃Seasonal North American Zonal Temperature Dipole via the Variability of Positive PNA Events. Climate Dynamics, 60(5): 1397-1413. https://doi.org/10.1007/s00382⁃022⁃06393⁃z |
| [6] |
Harnik, N., Messori, G., Caballero, R., et al., 2016. The Circumglobal North American Wave Pattern and Its Relation to Cold Events in Eastern North America. Geophysical Research Letters, 43(20): 11015-11023. https://doi.org/10.1002/2016GL070760 |
| [7] |
Hartmann, D. L., 2015. Pacific Sea Surface Temperature and the Winter of 2014. Geophysical Research Letters, 42(6): 1894-1902. https://doi.org/10.1002/2015GL063083 |
| [8] |
Higgins, R. W., Leetmaa, A., Kousky, V. E., 2002. Relationships between Climate Variability and Winter Temperature Extremes in the United States. Journal of Climate, 15(13): 1555-1572. https://doi.org/10.1175/1520⁃0442(2002)0151555:rbcvaw>2.0.co;2 |
| [9] |
Huang, R. H., 1986. Physical Mechanisms of the impact of Winter Low⁃Latitude Heat Source Anomalies on Northern Hemisphere Atmospheric Circulation. Science in China Series B⁃Chemistry Life Sciences & Earth Sciences, 16(1): 91-103 (in Chinese). |
| [10] |
Jin, J. M., Miller, N. L., Sorooshian, S., et al., 2006. Relationship between Atmospheric Circulation and Snowpack in the Western USA. Hydrological Processes, 20(4): 753-767. https://doi.org/10.1002/hyp.6126 |
| [11] |
Kalnay, E., Kanamitsu, M., Kistler, R., et al., 1996. The NCEP/NCAR 40⁃Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3): 437-472. https://doi.org/10.1175/1520⁃0477(1996)077<0437:TNYRP>2.0.CO;2 |
| [12] |
Lee, M. Y., Hong, C. C., Hsu, H. H., 2015. Compounding Effects of Warm Sea Surface Temperature and Reduced Sea Ice on the Extreme Circulation over the Extratropical North Pacific and North America during the 2013-2014 Boreal Winter. Geophysical Research Letters, 42(5): 1612-1618. https://doi.org/10.1002/2014GL062956 |
| [13] |
Li, C. Y., Zhang, Q., 1991. Global Atmospheric Low⁃Frequency Teleconnection. 1(4): 330-334 (in Chinese). |
| [14] |
Lin, H., 2015. Subseasonal Variability of North American Wintertime Surface Air Temperature. Climate Dynamics, 45(5): 1137-1155. https://doi.org/10.1007/s00382⁃014⁃2363⁃6 |
| [15] |
Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract). |
| [16] |
Liu, Z. F., Jian, Z. M., Yoshimura, K., et al., 2015. Recent Contrasting Winter Temperature Changes over North America Linked to Enhanced Positive Pacific⁃North American Pattern. Geophysical Research Letters, 42(18): 7750-7757. https://doi.org/10.1002/2015GL065656 |
| [17] |
Luo, D. H., Ge, Y., Zhang, W. Q., et al., 2020. A Unified Nonlinear Multiscale Interaction Model of Pacific⁃North American Teleconnection Patterns. Journal of the Atmospheric Sciences, 77(4): 1387-1414. https://doi.org/10.1175/JAS⁃D⁃19⁃0312.1 |
| [18] |
Meehl, G. A., Arblaster, J. M., Branstator, G., 2012. Mechanisms Contributing to the Warming Hole and the Consequent U.S. East⁃West Differential of Heat Extremes. Journal of Climate, 25(18): 6394-6408. https://doi.org/10.1175/jcli⁃d⁃11⁃00655.1 |
| [19] |
Mori, M., Watanabe, M., Shiogama, H., et al., 2014. Robust Arctic Sea⁃Ice Influence on the Frequent Eurasian Cold Winters in Past Decades. Nature Geoscience, 7(12): 869-873. https://doi.org/10.1038/ngeo2277 |
| [20] |
Peng, P. T., Kumar, A., Chen, M. Y., et al., 2019. Was the North American Extreme Climate in Winter 2013/14 a SST Forced Response? Climate Dynamics, 52(5): 3099-3110. https://doi.org/10.1007/s00382⁃018⁃4314⁃0 |
| [21] |
Rayner, N. A., Parker, D. E., Horton, E. B., et al., 2003. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407. https://doi.org/10.1029/2002JD002670 |
| [22] |
Singh, D., Swain, D. L., Mankin, J. S., et al., 2016. Recent Amplification of the North American Winter Temperature Dipole. Journal of Geophysical Research: Atmospheres, 121(17): 9911-9928. https://doi.org/10.1002/2016JD025116 |
| [23] |
Swain, D. L., Tsiang, M., Haugen, M., et al., 2014. The Extraordinary California Drought of 2013/2014: Character, Context, and the Role of Climate Change. Bulletin of the American Meteorological Society, 95(9): S3-S7. |
| [24] |
Vigaud, N., Robertson, A. W., Tippett, M. K., 2018. Predictability of Recurrent Weather Regimes over North America during Winter from Submonthly Reforecasts. Monthly Weather Review, 146(8): 2559-2577. https://doi.org/10.1175/mwr⁃d⁃18⁃0058.1 |
| [25] |
Wallace, J. M., Gutzler, D. S., 1981. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4): 784-812. https://doi.org/10.1175/1520⁃0493(1981)109<0784:TITGHF>2.0.CO;2 |
| [26] |
Wang, S. S., Huang, W. R., Yoon, J. H., 2015. The North American Winter ‘Dipole’ and Extremes Activity: A CMIP5 Assessment. Atmospheric Science Letters, 16(3): 338-345. https://doi.org/10.1002/asl2.565 |
| [27] |
Wang, S. Y., Hipps, L., Gillies, R. R., et al., 2014. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California drought: ENSO Precursor and Anthropogenic Warming Footprint. Geophysical Research Letters, 41(9): 3220-3226. https://doi.org/10.1002/2014GL059748 |
| [28] |
Wu, B. Y., 2018. Progresses in the Impact Study of Arctic Sea Ice Loss on Wintertime Weather and Climate Variability over East Asia and Key Academic Disputes. Chinese Journal of Atmospheric Sciences, 42(4): 786-805 (in Chinese with English abstract). |
| [29] |
Xie, J. B., Zhang, M. H., 2017. Role of Internal Atmospheric Variability in the 2015 Extreme Winter Climate over the North American Continent. Geophysical Research Letters, 44(5): 2464-2471. https://doi.org/10.1002/2017GL072772 |
| [30] |
Yao, Y., Luo, D. H., Dai, A. G., et al., 2017. Increased Quasi Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme Cold Events in Response to Arctic Warming. Part I: Insights from Observational Analyses. Journal of Climate, 30(10): 3549-3568. https://doi.org/10.1175/jcli⁃d⁃16⁃0261.1 |
| [31] |
Yu, B., Zhang, X. B., 2015. A Physical Analysis of the Severe 2013/2014 Cold Winter in North America. Journal of Geophysical Research: Atmospheres, 120(19): 10149-10165. https://doi.org/10.1002/2015JD023116 |
| [32] |
Yu, B., Zwiers, F. W., 2007. The Impact of Combined ENSO and PDO on the PNA Climate: A 1, 000⁃Year Climate Modeling Study. Climate Dynamics, 29(7): 837-851. https://doi.org/10.1007/s00382⁃007⁃0267⁃4 |
国家自然科学基金项目(42305027)
重大天气复盘专项(FPZJ2024⁃073)
/
| 〈 |
|
〉 |