基于IFS-LCT-ViT的时间序列分类方法

杨思栋, 王珂, 刘兵, 苏冰

南京师大学报(自然科学版) ›› 2025, Vol. 48 ›› Issue (02) : 91 -101.

PDF
南京师大学报(自然科学版) ›› 2025, Vol. 48 ›› Issue (02) : 91 -101.

基于IFS-LCT-ViT的时间序列分类方法

    杨思栋, 王珂, 刘兵, 苏冰
作者信息 +

Author information +
文章历史 +
PDF

摘要

目前针对时间序列分类问题,大多采用一维视角进行分析.二维视角下的时间序列具有更高量级的数据,但相关的研究较少且基本为格拉姆角场法(Gramian Angular Field, GAF)和卷积神经网络模型的组合.文中将对图像视角下的时间序列分类进行深入研究,对目前方法存在的相关问题进行优化.首先解决GAF算法的计算冗余问题,提出不平衡因子法(imbalance factor subtraction, IFS),以基础运算替换GAF的三角运算,在不损失分类精度的情况下,减少了图像生成过程的运算.其次针对卷积类模型存在局部偏好的问题,文中将图像识别的任务交给视觉全自注意力网络(Vision Transformer, ViT),通过对时序转换图分割,再对分割后的子块以全局并行计算的方式分配注意力权重,得到图像的整体特征.最后,提出适配ViT模型的轻量卷积令牌(lightweight convolutional token, LCT),通过一维卷积提取原始序列的局部特征,来弥补ViT模型对图像简单硬分割所带来的信息损失.结合以上所有提出了IFS-LCT-ViT模型,为了验证模型的有效性,在UCR官网中的11个数据集上进行了实验.结果表明,该模型与GRU-FCN、TST、GAF-CNN、XCM、OSCNN、MultiRocket相比,在6个数据集上获得了85.9%、80.2%、68.2%、63.0、85.3%和84.0%的最高准确率,证明了该模型在时间序列分类任务上的有效性.

关键词

时间序列分类 / 图像视角 / 不平衡因子 / 视觉自注意力网络 / 轻量卷积令牌

Key words

引用本文

引用格式 ▾
基于IFS-LCT-ViT的时间序列分类方法[J]. 南京师大学报(自然科学版), 2025, 48(02): 91-101 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

55

访问

0

被引

详细

导航
相关文章

AI思维导图

/