蛋白琥珀酰化修饰:代谢重编程中的调控方式

黄犇犇 ,  刘锦 ,  赵莉文 ,  钟佳宁

赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (06) : 580 -585.

PDF (464KB)
赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (06) : 580 -585. DOI: 10.3969/j.issn.1001-5779.2025.06.012
综述

蛋白琥珀酰化修饰:代谢重编程中的调控方式

作者信息 +

Succinylation-mediated metabolic reprogramming: unveiling novel regulatory mechanisms

Author information +
文章历史 +
PDF (475K)

摘要

蛋白琥珀酰化修饰是一种新兴的蛋白翻译后修饰(Post-translational modification, PTM)方式,其通过改变代谢酶活性或稳定性和底物反应进程,调节关键的生物代谢途径。这种PTM广泛参与能量代谢、糖代谢、脂质代谢及氨基酸代谢等生化代谢调控,影响细胞增殖、凋亡等细胞过程。因此,蛋白琥珀酰化修饰不仅是连接细胞代谢与细胞功能的重要桥梁,也是影响代谢调控与疾病发生发展的重要因素之一。最新研究表明,蛋白琥珀酰化修饰与一些代谢性疾病如糖尿病、癌症等的发生发展密切相关。本文针对蛋白琥珀酰化修饰在细胞代谢过程及相关疾病中的最新研究进展进行综述。

Abstract

Protein succinylation modification is an emerging post-translational modification (PTM) method. It regulates key biological metabolic pathways by altering the activity or stability of metabolic enzymes and the reaction process of substrates. This PTM is widely involved in the regulation of biochemical metabolic processes such as energy metabolism, carbohydrate metabolism, lipid metabolism, and amino acid metabolism, and affects cellular processes such as cell proliferation and apoptosis. Therefore, protein succinylation modification is not only an important bridge connecting cellular metabolism and cellular functions, but also one of the important factors influencing metabolic regulation and the occurrence and development of diseases. The latest research shows that protein succinylation modification is closely related to the occurrence and development of some metabolic diseases such as diabetes and cancer.This article reviews the latest research progress of protein succinylation modification in cellular metabolic processes and related diseases.

Graphical abstract

关键词

翻译后修饰 / 琥珀酰化修饰 / 细胞代谢

Key words

Post-translational modification / Protein succinylation / Cellular metabolism

引用本文

引用格式 ▾
黄犇犇,刘锦,赵莉文,钟佳宁. 蛋白琥珀酰化修饰:代谢重编程中的调控方式[J]. 赣南医科大学学报, 2025, 45(06): 580-585 DOI:10.3969/j.issn.1001-5779.2025.06.012

登录浏览全文

4963

注册一个新账户 忘记密码

蛋白质翻译后修饰(Post-translational modification, PTM)是指蛋白质在一个或多个氨基酸位点的共价翻译后修饰,是蛋白质生物功能的重要调节方式。PTM广泛存在于细胞内,其通过改变各种蛋白质的结构、活性、稳定性以及定位,从而调节细胞功能与生物学效应。目前,常见的PTM包括磷酸化、糖基化、乙酰化、泛素化、甲基化以及SUMO化等。近年来,随着蛋白质组学技术的发展,鉴定了一系列新兴的PTM方式,包括丙酰化、戊二酰化、乙酰化和琥珀酰化等1-2。其中蛋白琥珀酰化修饰在多种生物代谢途径起着关键调节作用2-5。本文对蛋白琥珀酰化修饰在细胞代谢过程及代谢性相关疾病中的最新研究进展进行综述。

1 蛋白琥珀酰化的形成机制

蛋白琥珀酰化修饰是通过琥珀酰转移酶催化琥珀酰基转移到蛋白质赖氨酸侧链形成6。在线粒体中,首先通过细胞代谢途径[如三羧酸循环(Tricarboxylic acid cycle, TCA)]生成琥珀酸,再由细胞质或线粒体中的琥珀酸的羧基和赖氨酸的氨基发生反应形成酰胺键,进一步形成琥珀酰基,然后转移至目标蛋白赖氨酸残基的ε-氨基上7-9。其次琥珀酰辅酶A是蛋白琥珀酰化修饰的直接供体,主要来源于TCA、氨基酸代谢等多种途径。另外,蛋白琥珀酰化修饰还依赖于琥珀酰转移酶(如α-KGDHC、CPT1A)和去琥珀酰化酶(如CobB、SIRT5/7)以及一些非酶控因素(如pH值)等(图1)。

2 蛋白琥珀酰化修饰的调控作用

蛋白琥珀酰化修饰由琥珀酰转移酶和去琥珀酰化酶共同调控。有研究8证明,SIRT5调控胞质蛋白赖氨酸的琥珀酰化,是一个重要的去琥珀酰化酶。此外,蛋白琥珀酰化修饰也已被证明可以调节细胞代谢途径中酶的活性、稳定性以及亚细胞定位10-12。例如,在TCA中,蛋白琥珀酰化修饰的SDH抑制其自身活性并损害线粒体呼吸,最终导致细胞产生的活性氧增多13。甘油醛-3-磷酸脱氢酶的琥珀酰化修饰会增强自身的酶活性,导致细胞糖酵解代谢增强14。此外,蛋白琥珀酰化修饰还参与细胞免疫和炎症等生理生化进程。例如,接头线粒体抗病毒信号蛋白(Mitochondrial antiviral signaling proteins, MAVS)的琥珀酰化修饰会阻止炎症信号通路的激活,从而抑制抗病毒基因的表达和Ⅰ型干扰素的产生15。而Toll样受体4(Toll like receptors 4, TLR4)炎症信号通路会反向影响琥珀酰化修饰过程和相应的蛋白功能16。值得关注的是,新型冠状病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)感染可以促进线粒体运输关键酶(如氧化戊二酸脱氢酶、异柠檬酸脱氢酶1)的琥珀酰化修饰抑制其活性,从而抑制细胞代谢途径,最终导致病毒复制发生17。此外,蛋白琥珀酰化修饰已被证明通过调节TCA和氧化磷酸化关键酶的活性来调控线粒体功能18。以下阐述蛋白琥珀酰化修饰在细胞内不同代谢中的作用。

2.1 蛋白琥珀酰化修饰在葡萄糖代谢中的作用

研究发现,蛋白琥珀酰化修饰通过可逆性调控葡萄糖代谢的各种关键酶的活性,调节葡萄糖代谢,其发生异常会引起机体代谢紊乱,如肥胖和糖尿病19-20。例如,蛋白琥珀酰化修饰通过改变糖原合成酶以及糖原分解酶的活性,进而影响细胞内糖原合成和分解过程。此外,另一个重要酶丙酮酸脱氢酶复合物(Pyruvate dehydrogenase complex, PDHC)经过琥珀酰化修饰后被激活,将丙酮酸转化为乙酰辅酶A21-22。蛋白琥珀酰化修饰也会影响葡萄糖代谢的其他酶的表达,包括TCA和电子传递链中的关键酶23。例如,果糖-1,6二磷酸醛缩酶的琥珀酰化修饰可以调节糖酵解过程进而调控葡萄糖代谢中产物的变化,最终影响细胞的葡萄糖利用效率和能量产生24。此外,在产生ATP过程中,柠檬酸裂解酶的琥珀酰化修饰也会影响乙酰辅酶A的产生,进而使细胞内的ATP含量发生变化25

2.2 蛋白琥珀酰化在氨基酸代谢中的作用

蛋白琥珀酰化修饰通过影响其修饰蛋白的活性,在氨基酸代谢的精确调控中起着关键作用。首先,蛋白琥珀酰化修饰可调节氨基酸生物合成和分解代谢关键酶的活性26-27。通过修饰这些酶,导致其催化活性受到可逆性调控,从而精确控制氨基酸的产生和降解速率。其次,蛋白琥珀酰化修饰也可调节氨基酸代谢的细胞信号通路。参与氨基酸合成、运输以及转录因子的可逆性调控,这种动态调控过程确保细胞能够适应不断变化的环境28-30。此外,蛋白琥珀酰化修饰和TCA有着密切联系1731

2.3 蛋白琥珀酰化修饰在脂肪酸代谢中的作用

蛋白琥珀酰化修饰主要通过调节脂质合成和分解关键酶的活性调节脂肪酸代谢。例如,线粒体三功能蛋白(Mitochondrial trifunctional protein, TFP)负责调控线粒体内长链脂肪酸的链长短,其琥珀酰化修饰可以精细调节细胞内脂肪酸合成和利用过程进而为细胞提供能量32。蛋白琥珀酰化修饰也可以调节脂肪酸代谢的信号分子功能33。琥珀酰辅酶A是TCA的关键中间体以及琥珀酰化反应的底物,影响细胞能量生产34。此外,蛋白琥珀酰化修饰能够直接影响与脂肪酸代谢相关的关键酶。通过对SIRT7敲除小鼠脾脏进行蛋白质组学分析发现,参与支链氨基酸分解代谢途径的蛋白质琥珀酰化修饰发生显著变化,SIRT7与支链氨基酸分解代谢途径的关键酶相互作用并促进SIRT7去琥珀酰化。因此,SIRT7缺失会导致支链氨基酸分解代谢增强、乙酰辅酶A积累和脂肪酸合成增加35。此外,当细胞能量需求增加时,尤其是在应对能量需求变化时(运动、饥饿或其他高能耗状态下),蛋白琥珀酰化修饰可以促进脂肪酸氧化,提供额外的能量来源以便于满足机体能量需求,这一过程对于维持细胞的能量平衡至关重要。

2.4 蛋白琥珀酰化修饰对氧化应激反应以及能量代谢的调控

蛋白琥珀酰化修饰通过调控细胞的氧化还原平衡影响细胞的应激反应。研究表明,蛋白琥珀酰化修饰通过调控氧化还原关键酶的活性,从而影响细胞内氧化剂和抗氧化剂之间的动态平衡36。异柠檬酸脱氢酶(Isocitrate dehydrogenase, IDH)蛋白琥珀酰化修饰也会抑制其活性以及在氧化还原中的生物学功能37。蛋白琥珀酰化修饰可以改变某些线粒体酶的活性,进而影响细胞内ATP合成。例如,在SIRT5敲除细胞中发现TCA中超过80%的蛋白质琥珀酰化修饰会增加SDH活性,从而提高细胞内外O2和CO2的交换频率。在小鼠急性肝损伤中,SIRT5表达显著下调从而抑制线粒体氧化应激、加剧肝损伤和炎症反应38。IDH蛋白琥珀酰化修饰也会抑制其活性以及其在氧化还原中的生物学功能39。另外,超氧化物歧化酶1(Superoxide dismutase 1, SOD1)进行琥珀酰化修饰后会降低其自身活性,当SIRT5与蛋白去琥珀酰化修饰的SOD1结合后,SOD1介导的活性氧含量将会减少。因此,机体内不同细胞的蛋白琥珀酰化修饰的水平以及其在不同的生理和病理状态下的调控机制可能存在显著差异。

3 蛋白琥珀酰化修饰与相关疾病的关系

前述中琥珀酰化修饰与线粒体功能和氧化应激反应的调控密切相关。而线粒体功能障碍以及过度的氧化应激会诱导多种恶性疾病的发生发展,如肿瘤、神经退行性疾病、心力衰竭等。以下介绍蛋白琥珀酰化修饰与这些疾病的关系。

3.1 蛋白琥珀酰化修饰与肿瘤的关系

研究发现肿瘤细胞的琥珀酰化修饰水平显著高于正常细胞。例如,琥珀酰辅酶A连接酶GDP形成亚基(Succinate-CoA ligase GDP-forming subunit beta, SUCLG2)的表达可以影响肺腺癌细胞琥珀酰化修饰的整体水平。而SUCLG2缺失可以上调线粒体蛋白的琥珀酰化修饰水平,并通过降低酶活性或蛋白质稳定性来抑制关键代谢酶的功能进而抑制肺腺癌细胞中的线粒体功能,从而促进肺腺癌细胞的增殖和肿瘤发生40。此外,SUCLG1介导的线粒体RNA聚合酶K622位点进行琥珀酰化修饰会破坏线粒体RNA聚合酶、线粒体基因组以及线粒体转录因子的相互作用,调控线粒体基因组转录和白血病细胞增殖等生物学过程41。研究表明,琥珀酰化修饰及其相关蛋白在不同肿瘤中对代谢重编程的调控功能不完全相同42。在胃癌中,乳酸脱氢酶能够被琥珀酰化修饰调控活性,进一步影响肿瘤代谢43。在酸性钙连接蛋白二聚体中的K47位点可被琥珀酰化修饰,通过抑制其泛素化而稳定蛋白结构,促进肿瘤细胞的侵袭和迁移44。脯氨酰4-羟化酶亚基a1基因敲除降低GBM细胞中琥珀酸和乳酸的水平,从而抑制细胞免疫反应和肿瘤生长45。在黑色素瘤中,补充a-酮戊二酸或琥珀酸可以使抗程序性细胞死亡蛋白1配体在K129位点发生琥珀酰化修饰并导致其降解,从而使升高的琥珀酰辅酶A水平促进T细胞介导的体外和体内肿瘤抑制46。值得注意的是,去琥珀酰化酶SIRT5促进肿瘤增殖、转移、耐药和代谢重编程47-48,其调控的蛋白琥珀酰化修饰是促进肿瘤发生的重要因素49。其中,过氧化物酶酰基辅酶A氧化酶1(Peroxisomal acyl-CoA oxidase 1, ACOX1)是SIRT5的底物之一。其琥珀酰化修饰可提高其酶活性,进而导致氧化性细胞损伤增加,并促进肝细胞癌的进展50。另外,SIRT5与SDHA相互作用,调控SDHA的K547位点的去琥珀酰化抑制SDHA的活性,进而促进肾细胞癌的肿瘤发生51。不仅如此,SIRT5下调和m6 A的过度琥珀酰化还与肾细胞癌的不良预后相关52

3.2 蛋白琥珀酰化修饰与其他相关疾病的关系

最近研究发现,在脑卒中患者中异常的琥珀酰化修饰可能导致能量代谢受损,这表明蛋白琥珀酰化修饰与脑血管疾病之间有着重要联系53。另外,琥珀酰化修饰异常与阿尔茨海默病等疾病的发病密切相关。其中,琥珀酰化修饰发生在淀粉样蛋白前体蛋白和微管相关蛋白(Microtubule-associated protein tau, MAPT)的关键位点。体外研究发现,淀粉样蛋白前体蛋白的琥珀酰化修饰破坏其正常的蛋白水解过程,从而促进Aβ的积累和斑块的形成,而且在细胞内Tau的琥珀酰化修饰促进其聚集成缠结并损害微管的组装54

蛋白琥珀酰化修饰在其他代谢性疾病中也有不容忽视的影响。临床研究发现,琥珀酰辅酶A合成酶的活性增强是缺血性心力衰竭的重要特征之一。当缺血性心力衰竭时琥珀酰辅酶A产生明显减少,这表明蛋白琥珀酰化修饰异常可能是缺血性心力衰竭发生的重要原因55。另外,脂肪酸摄取和氧化之间平衡的破坏会导致心脏脂毒性增加,这是成为诱导糖尿病性心肌病的重要因素。而SIRT5缺失导致损害脂肪酸氧化和脂质代谢中间产物的积累,其中主要包括中链和长链脂肪酰-肉毒碱。CPT2的琥珀酰化修饰也参与脂肪酰肉毒碱的产生,再转化为脂肪酰辅酶A并促进脂肪酸氧化。SIRT5缺失显著增加CPT2中K424位点的琥珀酰化修饰,导致其酶活性失活以及脂肪酰-肉毒碱积累56。蛋白琥珀酰化修饰还调控肥厚型心肌病57、脂肪肝58等代谢性疾病的发生发展。

4 小结

蛋白琥珀酰化修饰是一种重要的蛋白翻译后修饰方式,不仅广泛参与细胞内代谢过程而且与许多代谢相关疾病例如肿瘤的发生发展密切相关。在细胞内代谢中,蛋白琥珀酰化修饰能够直接影响多种代谢酶的活性,尤其是TCA中的关键酶(如琥珀酸脱氢酶和柠檬酸合成酶),从而使能量代谢处于动态平衡。蛋白琥珀酰化修饰通过改变代谢酶的稳定性或与其他修饰(如乙酰化)竞争底物位点,进一步影响糖酵解、脂肪酸氧化和氨基酸代谢等途径。在肿瘤中,蛋白琥珀酰化修饰通过调节肿瘤细胞的代谢影响肿瘤的发生、发展和转移。因此,蛋白琥珀酰化修饰在生物学和医学领域具有广泛的应用前景。深入研究蛋白琥珀酰化修饰调控蛋白的具体作用机制可能会提供新的肿瘤治疗靶点,以及对小分子特异性药物开发提供更精准的位点具有重要意义。此外,由于蛋白琥珀酰化修饰在代谢调控的可逆性以及特异性,也可作为糖尿病、心血管疾病等代谢性疾病的潜在生物标志物。另外,在技术层面,快速、高效、准确地检测蛋白琥珀酰化修饰试剂以及仪器的开发也是其作为生物标志物检测的关键。总之,在未来研究中,探索蛋白琥珀酰化修饰的潜在底物以及将其作为临床转化运用的技术开发研究对于临床疾病的治疗以及预防具有重要价值。

参考文献

[1]

WANG HLU JGAO W Cet al. Donepezil down-regulates propionylation, 2-hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation in the brain of bilateral common carotid artery occlusion-induced vascular dementia rats[J]. Clin Exp Pharmacol Physiol202047(10):1731-1739.

[2]

ZHOU BDU YXUE Yet al. Identification of malonylation, succinylation, and glutarylation in serum proteins of acute myocardial infarction patients[J]. Proteomics Clin Appl202014(1):e1900103.

[3]

DENG Y HZHANG X XTAO C Yet al. Succinylation profiles of brain injury after intracerebral hemorrhage[J]. PLoS One202116(11):e0259798.

[4]

YE JLI J. First analyses of lysine succinylation proteome and overlap between succinylation and acetylation in Solenopsis invicta Buren (Hymenoptera: Formicidae)[J]. BMC Genomics202223(1):61.

[5]

HUANG ZHE LSANG Wet al. Potential role of lysine succinylation in the response of moths to artificial light at night stress[J]. Ecotoxicol Environ Saf2021220:112334.

[6]

ZHANG ZTAN MXIE Zet al. Identification of lysine succinylation as a new post-translational modification[J]. Nat Chem Biol20117(1):58-63.

[7]

DOBOLYI ABAGO APALKOVITS Met al. Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation[J]. Brain Struct Funct2020225(2):639-667.

[8]

CHINOPOULOS C. The mystery of extramitochondrial proteins lysine succinylation[J]. Int J Mol Sci202122(11):6085.

[9]

DAI XZHOU YHAN Fet al. Succinylation and redox status in cancer cells[J]. Front Oncol202212:1081712.

[10]

CHEN Y. Quantitative analysis of the Sirt5-regulated lysine succinylation proteome in mammalian cells[J]. Methods Mol Biol20161410:23-37.

[11]

LU KHAN D. A review of the mechanism of succinylation in cancer[J]. Medicine (Baltimore)2022101(45):e31493.

[12]

NING QMA ZZHAO Xet al. SSKM_Succ: a novel succinylation sites prediction method incorporating K-means clustering with a new semi-supervised learning algorithm[J]. IEEE/ACM Trans Comput Biol Bioinform202219(1):643-652.

[13]

HOU XCHEN YLI Xet al. Protein succinylation: regulating metabolism and beyond[J]. Front Nutr202411:1336057.

[14]

WANG Y FZHAO L NGENG Yet al. Aspirin modulates succinylation of PGAM1K99 to restrict the glycolysis through NF-κB/HAT1/PGAM1 signaling in liver cancer[J]. Acta Pharmacol Sin202344(1):211-220.

[15]

LIU XZHU CZHA Het al. SIRT5 impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation[J]. EMBO J202039(11):e103285.

[16]

LIANG Y JYANG Y RTAO C Yet al. Deep succinylproteomics of brain tissues from intracerebral hemorrhage with inhibition of toll-like receptor 4 signaling[J]. Cell Mol Neurobiol202242(8):2791-2804.

[17]

LIU QWANG HZHANG Het al. The global succinylation of SARS-CoV-2-infected host cells reveals drug targets[J]. Proc Natl Acad Sci USA2022119(30):e2123065119.

[18]

BAI FMA YLIU Q. Succinylation as a novel mode of energy metabolism regulation during atrial fibrillation[J]. Med Hypotheses2018121:54-55.

[19]

BONDS A CYUAN TWERMAN J Met al. Post-translational succinylation of Mycobacterium tuberculosis enoyl-CoA hydratase EchA19 slows catalytic hydration of cholesterol catabolite 3-oxo-chol-4, 22-diene-24-oyl-CoA[J]. ACS Infect Dis20206(8):2214-2224.

[20]

KE XJIANG XHUANG Met al. Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production[J]. Appl Microbiol Biotechnol2022106(13/14/15/16):5153-5165.

[21]

WANG MCHANG QYANG Het al. Elevated lysine crotonylation and succinylation in the brains of BTBR mice[J]. Int J Dev Neurosci201976:61-64.

[22]

ARTIUKHOV A VALESHIN V AKARLINA I Set al. Phosphonate inhibitors of pyruvate dehydrogenase perturb homeostasis of amino acids and protein succinylation in the brain[J]. Int J Mol Sci202223(21):13186.

[23]

WU JLI NHUANG Xet al. Proteomic quantification of lysine acetylation and succinylation profile alterations in lung adenocarcinomas of non-smoking females[J]. Yonago Acta Med202265(2):132-147.

[24]

GREEN S RSTOREY K B. Skeletal muscle of torpid Richardson's ground squirrels (Urocitellus richardsonii) exhibits a less active form of citrate synthase associated with lowered lysine succinylation[J]. Cryobiology2021101:28-37.

[25]

QI HNING XYU Cet al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress[J]. Cell Death Dis201910(3):170.

[26]

SICULELLA LGIANNOTTI LDI CHIARA STANCA Bet al. Evidence for a negative correlation between human reactive enamine-imine intermediate deaminase A (RIDA) activity and cell proliferation rate: role of lysine succinylation of RIDA[J]. Int J Mol Sci202122(8):3804.

[27]

TONG YGUO DLIN S Het al. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells[J]. Mol Cell202181(11):2303-2316.e8.

[28]

YUAN YYUAN HYANG Get al. IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA[J]. Clin Epigenetics202012(1):135.

[29]

GUILLON ABREA-DIAKITE DCEZARD Aet al. Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein[J]. EMBO J202241(12):e108306.

[30]

JING YDING DTIAN Get al. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility[J]. Nucleic Acids Res202048(17):9538-9549.

[31]

GUT P, MATILAINEN SMEYER J Get al. SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease[J]. Nat Commun202011(1):5927.

[32]

ZHANG YGOETZMAN E. The enzyme activity of mitochondrial trifunctional protein is not altered by lysine acetylation or lysine succinylation[J]. PLoS One202116(10):e0256619.

[33]

KARUNANIDHI ABASU SZHAO X Jet al. Heptanoic and medium branched-chain fatty acids as anaplerotic treatment for medium chain acyl-CoA dehydrogenase deficiency[J]. Mol Genet Metab2023140(3):107689.

[34]

COLLADO MSOLARMSTRONG A JOLSON Met al. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes[J]. Mol Genet Metab2020130(3):183-196.

[35]

HU ZCHEN YLEI Jet al. SIRT7 regulates T-cell antitumor immunity through modulation BCAA and fatty acid metabolism[J]. Cell Death Differ2025.doi: 10.1038/s41418-025-01490-y .

[36]

CHEN HXU HPOTASH Set al. Mild metabolic perturbations alter succinylation of mitochondrial proteins[J]. J Neurosci Res201795(11):2244-2252.

[37]

HERSHBERGER K AABRAHAM D MLIU Jet al. Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload[J]. J Biol Chem2018293(27):10630-10645.

[38]

YU QZHANG JLI Jet al. Sirtuin 5-mediated desuccinylation of ALDH2 alleviates mitochondrial oxidative stress following acetaminophen-induced acute liver injury[J]. Adv Sci (Weinh)202411(39):e2402710.

[39]

GIBSON G EXU HCHEN H Let al. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines[J]. J Neurochem2015134(1):86-96.

[40]

HU QXU JWANG Let al. SUCLG2 regulates mitochondrial dysfunction through succinylation in lung adenocarcinoma[J]. Adv Sci (Weinh)202310(35):e2303535.

[41]

YAN WXIE CSUN Set al. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression[J]. EMBO J202443(12):2337-2367.

[42]

LIU ZWANG RWANG Yet al. Targeting succinylation-mediated metabolic reprogramming as a potential approach for cancer therapy[J]. Biomed Pharmacother2023168:115713.

[43]

LI XZHANG CZHAO Tet al. Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer[J]. J Exp Clin Cancer Res202039(1):172.

[44]

WANG CZHANG CLI Xet al. CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion[J]. J Cell Mol Med201923(1):293-305.

[45]

YANG SZHAN QSU Det al. HIF1α/ATF3 partake in PGK1 K191/K192 succinylation by modulating P4HA1/succinate signaling in glioblastoma[J]. Neuro Oncol202426(8):1405-1420.

[46]

LIANG LKUANG XHE Yet al. Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma[J]. Nat Genet202557(3):680-693.

[47]

TANG ZLI LTANG Yet al. CDK2 positively regulates aerobic glycolysis by suppressing SIRT5 in gastric cancer[J]. Cancer Sci2018109(8):2590-2598.

[48]

WANG XSHI XLU Het al. Succinylation inhibits the enzymatic hydrolysis of the extracellular matrix protein fibrillin 1 and promotes gastric cancer progression[J]. Adv Sci (Weinh)20229(27):e2200546.

[49]

KE ZSHEN KWANG Let al. Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development[J]. Front Immunol202516:1531246.

[50]

LU WCHE XQU Xet al. Succinylation regulators promote clear cell renal cell carcinoma by immune regulation and RNA N6-methyladenosine methylation[J]. Front Cell Dev Biol20219:622198.

[51]

MA YQI YWANG Let al. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis[J]. Free Radic Biol Med2019134:458-467.

[52]

TONG YGUO DYAN Det al. KAT2A succinyltransferase activity-mediated 14-3-3ζ upregulation promotes β-catenin stabilization-dependent glycolysis and proliferation of pancreatic carcinoma cells[J]. Cancer Lett2020469:1-10.

[53]

LIAN JLIU WHU Qet al. Succinylation modification: a potential therapeutic target in stroke[J]. Neural Regen Res202419(4):781-787.

[54]

YANG YTAPIAS VACOSTA Det al. Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease[J]. Nat Commun202213(1):159.

[55]

ALI H RMICHEL C RLIN Y Het al. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy[J]. J Mol Cell Cardiol2020138:304-317.

[56]

WU MTAN JCAO Zet al. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation[J]. Redox Biol202473:103184.

[57]

HOU XZHU LXU Het al. Dysregulation of protein succinylation and disease development[J]. Front Mol Biosci202411:1407505.

[58]

LIU SLI RSUN Y Wet al. Protein succinylation, hepatic metabolism, and liver diseases[J]. World J Hepatol202416(3):344-352.

基金资助

江西省自然科学基金重点项目(20224ACB206003)

江西省自然科学基金面上项目(20232BAB206045)

赣州市创新领军人才科学计划项目(2022CXRC8898)

AI Summary AI Mindmap
PDF (464KB)

127

访问

0

被引

详细

导航
相关文章

AI思维导图

/