PKM2及PARP14参与调控糖酵解的研究进展

武志鹏 ,  刘建朔 ,  董家仪 ,  曾吉强 ,  鲁陈 ,  朱颖

赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (07) : 689 -693.

PDF (397KB)
赣南医科大学学报 ›› 2025, Vol. 45 ›› Issue (07) : 689 -693. DOI: 10.3969/j.issn.1001-5779.2025.07.014
综述

PKM2及PARP14参与调控糖酵解的研究进展

作者信息 +

Research progress on the regulation of glycolysis by PKM2 and PARP14

Author information +
文章历史 +
PDF (405K)

摘要

糖酵解是糖代谢的三大途径之一,是细胞代谢的关键环节,在能量生成和生物合成过程中扮演着核心角色,对维持细胞功能至关重要。在糖酵解过程中,丙酮酸激酶M2型(Pyruvate kinase M2,PKM2)异构体发挥关键作用,是“Warburg效应”的调控枢纽。聚腺苷二磷酸核糖聚合酶14[Poly(ADP-ribose) polymerase 14,PARP14]作为一种多功能酶,可通过多种机制影响PKM2的功能,进而对糖酵解和“Warburg效应”产生深远影响。本综述探讨PARP14对PKM2功能的多重调控途径,揭示PARP14在糖酵解过程中的复杂作用机制,为理解PARP14在代谢调控中的多面性提供新视角,在此基础上,提出针对肿瘤疾病的新型治疗策略,为未来研究和临床应用奠定一定基础。

Abstract

Glycolysis is one of the three major pathways of sugar metabolism and a key link in cellular metabolism. It plays a central role in energy production and biosynthesis, and is also crucial for maintaining cellular functions. In this process, the pyruvate kinase M2 (PKM2) isozyme plays a pivotal role as a regulatory hub of the warburg effect. Poly (ADP-ribose) polymerase 14 (PARP14), as a multifunctional enzyme, is believed to affect the function of PKM2 through various mechanisms, thereby having a profound impact on glycolysis and the warburg effect. This review delves into the multiple regulatory pathways of PARP14 on the function of PKM2, reveals the complex mechanisms of PARP14 in the glycolytic process, provides a new perspective on the multifaceted role of PARP14 in metabolic regulation, and on this basis, proposes potential new therapeutic strategies for various tumor diseases, laying a certain foundation for future research and clinical applications.

关键词

丙酮酸激酶M2型 / 聚腺苷二磷酸核糖聚合酶14 / 糖酵解 / Warburg效应

Key words

Pyruvate kinase M2 / Poly(ADP-ribose) polymerase 14 / Glycolysis / Warburg effect

引用本文

引用格式 ▾
武志鹏,刘建朔,董家仪,曾吉强,鲁陈,朱颖. PKM2及PARP14参与调控糖酵解的研究进展[J]. 赣南医科大学学报, 2025, 45(07): 689-693 DOI:10.3969/j.issn.1001-5779.2025.07.014

登录浏览全文

4963

注册一个新账户 忘记密码

丙酮酸激酶(Pyruvate kinase,PK)在糖酵解途径中发挥重要作用,而其M2型(Pyruvate kinase M2,PKM2)异构体则是某些组织细胞糖酵解途径的关键限速因素1。PKM2与恶性肿瘤的发生、发展和预后紧密相连,是“Warburg效应”的中心调控点2-3,在调控细胞能量代谢中也扮演着核心角色。“Warburg效应”是指与正常细胞相比,癌细胞显著偏好通过糖酵解途径生成能量,并产生大量的乳酸和丙酮酸等三碳化合物4-5。另外,PKM2的功能也受多种信号通路的精细调控16。因此,深入研究PKM2成为理解糖代谢、肿瘤代谢等发生发展机制的重中之重。
聚腺苷二磷酸核糖聚合酶14[Poly(ADP-ribose) polymerase 14,PARP14]是一种多功能的腺苷二磷酸(Adenosine diphosphate,ADP)核糖基转移酶,在细胞的DNA修复、转录调控、过敏性炎症反应以及肿瘤生物学中扮演着关键角色,其活性异常与疾病进展和不良临床预后呈相关性7-10。目前越来越多研究关注PARP14在糖代谢中的作用。PARP14可通过激活核因子-κB(Nuclear factor kappa B,NF-κB)-缺氧诱导因子1α(Hypoxia-inducible factor 1-alpha,HIF-1α)信号通路,及通过调节白介素4(Interleukin-4,IL-4)、丝/苏氨酸蛋白激酶1(Serine/threonine kinase 1,PIM1)和c-Jun氨基末端激酶1(c-Jun N-terminal kinase 1,JNK1)等关键分子的表达,对糖酵解的调控网络施加影响11-13,这些分子在细胞代谢和信号转导中扮演着重要角色。此外,PARP14还通过调控磷酸葡萄糖异构酶(Phosphoglucose isomerase,PGI)和自分泌运动因子(Autocrine motility factor,AMF)的表达,以及髓细胞组织增生转录因子(Myelocytomatosis oncogene,MYC)活性,来调节糖酵解的各个环节14-15。值得注意的是,PARP14对这些分子的影响,最终都汇聚于对共同的代谢酶PKM2的刺激作用。本综述探讨PARP14如何通过调节PKM2的表达,进而对糖酵解过程产生影响,揭示其在细胞代谢调控中的重要作用和潜在机制。

1 NF-κB-HIF-1α/PIM1信号通路

NF-κB作为转录因子家族的核心成员,在免疫炎症、代谢调控及肿瘤发展中发挥枢纽作用16-17。其下游关键靶点HIF-1α是缺氧应答的核心调控者18,NF-κB不仅通过稳定HIF-1α蛋白激活缺氧适应基因,还利用p50/RelA(p65)亚基协同结合HIF-基因启动子,直接调控其转录19-21。p65还可以与HIF-1α相互作用,显著上调PKM2的转录水平,增强细胞代谢适应性22。同时,PKM2在缺氧应答中具有双重功能——除作为糖酵解酶外,还能进入细胞核与HIF-1α相互作用,参与代谢-转录耦合调控23

NF-κB的调控网络延伸至PIM1信号轴:p65通过结合PIM1启动子直接激活其转录,表现为p65表达/活性与PIM1表达水平呈正相关24-25。关键的是,PIM1作为PKM2的上游调控因子,其基因敲除可导致PKM2活性显著降低,证实了PIM1-PKM2的直接调控关系26。NF-κB主要通过p65分叉调控HIF-1α和PIM1,而二者信号最终汇聚于PKM2这一代谢枢纽。该通路与PARP14介导的PIM1调控形成交汇,凸显PKM2在整合NF-κB与PARP14信号中的核心地位。

2 STAT6-IL-4-PIM1信号通路

信号转导及转录激活蛋白6(Signal transducer and activator of transcription 6,STAT6)是一种重要的转录因子,驱动辅助型T细胞2(T helper 2 cell,TH2)的分化与增殖,并在激活免疫细胞及靶组织细胞中调控细胞因子基因表达和细胞因子信号传递27。PIM1作为代谢枢纽PKM2的关键上游调控因子,同时受NF-κB和PARP14-STAT6-IL-4轴的双重调控。其中,PARP14通过表观遗传机制直接控制IL-4信号,作为STAT6的转录共激活因子928,其通过ADP核糖化修饰实现功能转换——静息态与组蛋白去乙酰化酶2/3(Histone deacetylase 2/3,HDAC2/3)结合沉默IL-4启动子;当IL-4刺激时,STAT6诱导PARP14发生自修饰,促使其与HDAC解离并激活IL-4转录,形成正反馈循环29。该循环核心价值在于建立PARP14与PKM2的代谢调控链,激活的IL-4信号通过STAT6增强PIM1表达,而PIM1已被证实能直接磷酸化PKM2并调节其活性26。因此,PARP14成为连接免疫信号(IL-4/STAT6)与代谢重编程(PKM2)的核心分子开关,其介导的级联反应最终实现对肿瘤代谢枢纽PKM2的功能重塑。

3 PGI/AMF-PI3K/AKT-mTOR信号通路

磷酸葡萄糖异构酶/自泌运动因子(Phosphoglucose isomerase/Autocrine motility factor,PGI/AMF)是一种多功能糖酵解酶,在糖代谢中扮演着关键角色30-31。PGI/AMF可激活胰岛素受体底物1(Insulin receptor substrate-1,IRS-1)和胰岛素受体底物2(Insulin receptor substrate-2,IRS-2)进而增加磷脂酰肌醇-4,5-二磷酸3激酶(Phosphatidylinositol-4,5-bisphosphate 3-kinase,PI3K)的表达32。蛋白激酶B(Protein kinase B,AKT)作为PI3K下游的主要效应分子,在细胞生理中发挥多方面作用33,参与调控细胞存活、增殖、代谢、转录和蛋白质合成等一系列关键细胞过程。雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)是一种多功能丝氨酸/苏氨酸蛋白激酶,作为PI3K和AKT信号通路的关键下游效应分子32,在细胞内发挥核心作用。mTOR不是单一实体,是由2个不同的功能复合体mTOR复合体1(mTOR complex 1,mTORC1)和mTOR复合体2(mTOR complex 2,mTORC2)组成34-35,这些复合体各自具有独特的组成成分和生物学功能,在调控细胞生长、蛋白质合成、脂质代谢以及细胞能量平衡等多个方面发挥作用。mTORC1通常与细胞对营养和能量状态的响应相关,而mTORC2则与细胞结构和功能完整性的维持相关36。研究表明,mTOR能够通过影响PKM2的表达水平,进而增强“Warburg效应”37-38。重要的是,PARP14被证实是该通路的关键调控节点,其通过干预PGI/AMF-PI3K/AKT-mTOR信号级联,直接调节PKM2活性,从而显著放大“Warburg效应”。

4 JNK1-PKM2信号通路

JNK1是一种在生物进化中高度保守的丝氨酸/苏氨酸蛋白激酶,作为MAPK信号通路家族的关键成员,主要参与调控细胞对压力、炎症和生长因子刺激的应激反应等信号转导过程39-40。其重要的下游调控靶点之一是PKM2。具体而言,JNK1通过磷酸化PKM2蛋白第365位的苏氨酸残基(Thr365),从而显著增强PKM2的激酶活性13。值得注意的是,在多发性骨髓瘤的研究中发现,当PARP14表达水平降低时,会伴随着JNK1活性的显著升高41。这一负相关性强烈提示PARP14在生理条件下可能抑制JNK1信号通路,其可能机制是通过影响JNK1的磷酸化状态或上游激酶活性来实现。大量研究表明,PKM2的低活性状态是驱动肿瘤细胞发生“Warburg效应”的核心分子机制之一。低活性的PKM2导致糖酵解中间产物积累,为肿瘤细胞的生物合成提供前体物质,并减少线粒体氧化磷酸化。基于上述研究发现,PARP14可抑制JNK1活性,而JNK1又能激活PKM2,PARP14可能通过抑制JNK1,进而减弱JNK1对PKM2 Thr365位点的磷酸化作用,最终导致PKM2活性降低。这种PKM2活性的下降,正是促进“Warburg效应”发生和维持的关键所在。换言之,PARP14表达下调促进“Warburg效应”,很可能是通过解除其对JNK1的抑制,进而通过JNK1-PKM2轴实现的。

5 MYC信号通路

MYC是一种核蛋白类原癌基因,根据染色体定位的不同分为C-MYCN-MYCL-MYC。其作为一种多功能转录因子,在调控细胞增殖、分化以及代谢等关键生物学过程中扮演着核心角色42-44。MYC促进乳酸脱氢酶A(Lactate dehydrogenase A,LDHA)表达,同时,MYC-LDHA信号轴还是“Warburg效应”的调控枢纽45-46。此外,MYC还是调控己糖激酶2(Hexokinase 2,HK2)、磷酸果糖激酶1(Phosphofructokinase-1,PFK1)以及烯醇化酶1(Enolase 1,ENO1)等其他糖酵解途径中的关键酶47。尤为重要的是,C-MYC不仅与PKM2活性显著相关4248,还能通过结合PKM2基因启动子直接调控其表达49,且与HIF-1α协同增强对PKM2的转录控制50。最新研究表明,PARP14可通过调控MYC影响PKM2通路——其抑制剂GeA-69与拓扑异构酶β结合蛋白1抑制剂5D4联用时,可协同抑制MYC蛋白表达51,这为靶向PARP14-MYC-PKM2轴干预肿瘤代谢提供直接依据。

6 小结与展望

本文综述了以PKM2为代谢枢纽的肿瘤信号网络:NF-κB通过RelA(p65)协同调控HIF-1α/PIM1并汇聚于PKM2;STAT6-IL-4-PIM1通路中PARP14作为共激活因子经正反馈环调控PKM2活性;PGI/AMF-PI3K/AKT-mTOR轴通过影响PKM2表达增强“Warburg效应”;JNK1-PKM2通路揭示PARP14通过抑制JNK1磷酸化活性降低PKM2活性,直接驱动“Warburg效应”;MYC则通过直接结合PKM2启动子并协同HIF-1α主导糖酵解重编程。这些发现确立了PKM2在整合转录、代谢与免疫信号中的核心地位,尤其凸显PARP14通过抑制JNK1(降低PKM2活性)和激活STAT6(促进PIM1-PKM2轴)的双重调控功能。基于此,靶向调控PARP14活性或其与PKM2的相互作用,可干扰肿瘤细胞能量代谢重编程抑制恶性增殖,为开发靶向代谢通路的治疗策略提供新方向。

参考文献

[1]

CHEN LSHI YLIU Set al. PKM2: the thread linking energy metabolism reprogramming with epigenetics in cancer[J]. Int J Mol Sci201415(7):11435-11445.

[2]

ISRAELSEN W JDAYTON T LDAVIDSON S Met al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells[J]. Cell2013155(2):397-409.

[3]

CHRISTOFK H RVANDER HEIDEN M GHARRIS M Het al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J]. Nature2008452(7184):230-233.

[4]

WU HZHAO HCHEN L. Deoxyshikonin inhibits viability and glycolysis by suppressing the Akt/mTOR pathway in acute myeloid leukemia cells[J]. Front Oncol202010:1253.

[5]

KIM J WGAO PLIU Y Cet al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1[J]. Mol Cell Biol200727(21):7381-7393.

[6]

AZOITEI NBECHER ASTEINESTEL Ket al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation[J]. Mol Cancer201615:3.

[7]

TAUBER A LLEVONIS S MSCHWEIKER S S. Recent developments in PARP14 research[J]. Future Med Chem202012(18):1657-1667.

[8]

NICOLAE C MAHO E RCHOE K Net al. A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress[J]. Nucleic Acids Res201543(6):3143-3153.

[9]

QIN WWU H JCAO L Qet al. Research progress on PARP14 as a drug target[J]. Front Pharmacol201910:172.

[10]

YAO NCHEN QSHI Wet al. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway[J]. Mol Carcinog201958(7):1291-1302.

[11]

CHO S HGOENKA SHENTTINEN Tet al. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells[J]. Blood2009113(11):2416-2425.

[12]

ZHU YLIU ZWAN Yet al. PARP14 promotes the growth and glycolysis of acute myeloid leukemia cells by regulating HIF-1α expression[J]. Clin Immunol2022242:109094.

[13]

IANSANTE VCHOY P MFUNG S Wet al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation[J]. Nat Commun20156:7882.

[14]

YANAGAWA TFUNASAKA TTSUTSUMI Set al. Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly(ADP-ribose) polymerase family-14[J]. Cancer Res200767(18):8682-8689.

[15]

CHO S HAHN A KBHARGAVA Pet al. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family[J]. Proc Natl Acad Sci USA2011108(38):15972-15977.

[16]

TACCHINI LDE PONTI CMATTEUCCI Eet al. Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines[J]. Carcinogenesis200425(11):2089-2100.

[17]

VOLK ALI JXIN Jet al. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML[J]. J Exp Med2014211(6):1093-1108.

[18]

BONELLO SZÄHRINGER CBELAIBA R Set al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site[J]. Arterioscler Thromb Vasc Biol200727(4):755-761.

[19]

VAN UDEN PKENNETH N SROCHA S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB[J]. Biochem J2008412(3):477-484.

[20]

MA JMI CWANG K Set al. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer[J]. Oncotarget20167(24):36551-36562.

[21]

QIAO QNOZAKI YSAKOE Ket al. NF-κB mediates aberrant activation of HIF-1 in malignant lymphoma[J]. Exp Hematol201038(12):1199-1208.

[22]

XU QLIU L ZYIN Yet al. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression[J]. Oncogene201534(43):5482-5493.

[23]

LUO WHU HCHANG Ret al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell2011145(5):732-744.

[24]

ZHU NRAMIREZ L MLEE R Let al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway[J]. J Immunol2002168(2):744-754.

[25]

ZHANG YPARSANEJAD MHUANG Eet al. Pim-1 kinase as activator of the cell cycle pathway in neuronal death induced by DNA damage[J]. J Neurochem2010112(2):497-510.

[26]

LEUNG C OWONG C CFAN D Net al. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma[J]. Oncotarget20156(13):10880-10892.

[27]

KRISHNAMURTHY PKAPLAN M H. STAT6 and PARP family members in the development of T cell-dependent allergic inflammation[J]. Immune Netw201616(4):201-210.

[28]

IWATA HGOETTSCH CSHARMA Aet al. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J]. Nat Commun20167:12849.

[29]

TANG YLIU JWANG Yet al. PARP14 inhibits microglial activation via LPAR5 to promote post-stroke functional recovery[J]. Autophagy202117(10):2905-2922.

[30]

KIM J WDANG C V. Multifaceted roles of glycolytic enzymes[J]. Trends Biochem Sci200530(3):142-150.

[31]

GRAUVOGEL CBRINKMANN HPETERSEN J. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes[J]. Mol Biol Evol200724(8):1611-1621.

[32]

XIE YSHI XSHENG Ket al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)[J]. Mol Med Rep201919(2):783-791.

[33]

AMMAR HCLOSSET J L. Clusterin activates survival through the phosphatidylinositol 3-kinase/Akt pathway[J]. J Biol Chem2008283(19):12851-12861.

[34]

LAPLANTE MSABATINI D M. mTOR signaling at a glance[J]. J Cell Sci2009122(pt 20):3589-3594.

[35]

MA X MBLENIS J. Molecular mechanisms of mTOR-mediated translational control[J]. Nat Rev Mol Cell Biol200910(5):307-318.

[36]

ZONCU REFEYAN ASABATINI D M. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol201112(1):21-35.

[37]

TALESA V NFERRI IBELLEZZA Get al. Glyoxalase 2 is involved in human prostate cancer progression as part of a mechanism driven by PTEN/PI3K/AKT/mTOR signaling with involvement of PKM2 and ERα[J]. Prostate201777(2):196-210.

[38]

SUN QCHEN XMA Jet al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J]. Proc Natl Acad Sci USA2011108(10):4129-4134.

[39]

MEHROTRA PHOLLENBECK ARILEY J Pet al. Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates T(H)2 differentiation and allergic airway disease[J]. J Allergy Clin Immunol2013131(2):521-531.e1-12.

[40]

BUBICI CPAPA S. JNK signalling in cancer: in need of new, smarter therapeutic targets[J]. Br J Pharmacol2014171(1):24-37.

[41]

BARBARULO AIANSANTE VCHAIDOS Aet al. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma[J]. Oncogene201332(36):4231-4242.

[42]

KIM J WZELLER K IWANG Yet al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays[J]. Mol Cell Biol200424(13):5923-5936.

[43]

DANG C VLE AGAO P. MYC-induced cancer cell energy metabolism and therapeutic opportunities[J]. Clin Cancer Res200915(21):6479-6483.

[44]

DANG C V. The interplay between MYC and HIF in the Warburg effect [J]. Ernst Schering Found symp proc2007,(4):35-53.

[45]

SAN-MILLÁN IBROOKS G A. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect[J]. Carcinogenesis201738(2):119-133.

[46]

HE T LZHANG Y JJIANG Het al. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer[J]. Med Oncol201532(7):187.

[47]

SLOAN E JAYER D E. Myc, Mondo, and metabolism[J]. Genes Cancer20101(6):587-596.

[48]

MÉNDEZ-LUCAS ALI XHU Jet al. Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities[J]. Cancer Res201777(16):4355-4364.

[49]

GUPTA AAJITH ASINGH Set al. PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect[J]. Cell Death Dis20189(8):825.

[50]

YEUNG S JPAN JLEE M H. Roles of p53, myc and HIF-1 in regulating glycolysis—the seventh hallmark of cancer[J]. Cell Mol Life Sci200865(24):3981.

[51]

MENTZ MKEAY WSTROBL C Det al. PARP14 is a novel target in STAT6 mutant follicular lymphoma[J]. Leukemia202236(9):2281-2292.

基金资助

江西省卫生健康委员会普通科技计划项目(202410332)

赣州市科技局指导性科技计划项目(GZ2023ZSF084)

AI Summary AI Mindmap
PDF (397KB)

269

访问

0

被引

详细

导航
相关文章

AI思维导图

/