基于Lyapunov范数的线性斜积半流非一致指数二分性的离散Datko型定理

岳田, 宋晓秋

四川师范大学学报(自然科学版) ›› 2021, Vol. 44 ›› Issue (02) : 240 -244.

PDF
四川师范大学学报(自然科学版) ›› 2021, Vol. 44 ›› Issue (02) : 240 -244.

基于Lyapunov范数的线性斜积半流非一致指数二分性的离散Datko型定理

    岳田, 宋晓秋
作者信息 +

Author information +
文章历史 +
PDF

摘要

主要目的是基于Lyapunov范数研究Banach空间中线性斜积半流的非一致指数二分性的离散刻画.借助连续形式的Datko型定理,得到线性斜积半流满足非一致指数二分的若干离散型充要条件.所得结果推广了指数稳定性与指数二分性理论中一些已有结果(如Datko、Pazy、Preda等).

关键词

线性斜积半流 / 非一致指数二分性 / Datko型定理 / 离散形式

Key words

引用本文

引用格式 ▾
基于Lyapunov范数的线性斜积半流非一致指数二分性的离散Datko型定理[J]. 四川师范大学学报(自然科学版), 2021, 44(02): 240-244 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

43

访问

0

被引

详细

导航
相关文章

AI思维导图

/