湘东北地区赋矿围岩与金成矿的关系

尹樱 ,  董国军

黄金科学技术 ›› 2025, Vol. 33 ›› Issue (02) : 248 -263.

PDF (9779KB)
黄金科学技术 ›› 2025, Vol. 33 ›› Issue (02) : 248 -263. DOI: 10.11872/j.issn.1005-2518.2025.02.245
矿产勘查与资源评价

湘东北地区赋矿围岩与金成矿的关系

作者信息 +

Relationship Between Ore-bearing Wall Rock and Gold Mineralization in Northeastern Hunan Province

Author information +
文章历史 +
PDF (10013K)

摘要

湘东北地区位于江南造山带中段,发育万古和黄金洞等典型金矿床。为了系统研究湘东北地区不同水岩反应与金沉淀的成因联系,开展了野外地质调查、岩相学观察和热力学模拟研究。野外地质调查发现,粉砂质板岩是湘东北地区最主要的赋矿围岩,其在矿体周围发生大规模褪色化蚀变,即青灰色变成灰黄—灰白色;部分矿体位于碳质板岩中,该围岩在较强的流体交代作用下仍呈现出黑色,无明显颜色变化。岩相学观察表明,褪色化蚀变带中发育大量菱铁矿斑点,且被含金黄铁矿和毒砂切穿和交代,指示成矿前碳酸盐化;碳质板岩中硫化物与碳质物密切共生。热力学模拟研究表明,褪色化蚀变带中发育的菱铁矿可与流体反应,通过诱发硫化作用造成金沉淀。板岩中的绿泥石也可与流体反应从而诱发硫化作用,但由于碳酸盐的溶解速率高于绿泥石,因此其具有更高的化学反应活性,致使金矿体更有利于赋存在碳质板岩的褪色化蚀变带中。碳质板岩中的碳质物(CM)也通过水岩反应降低流体氧逸度,促进流体沸腾并提供流体运移—沉淀空间,造成金沉淀。因此,湘东北地区浅变质粉砂质板岩和碳质板岩均可通过不同机制促进金沉淀,为该区有利的赋矿围岩。

Abstract

The northeastern region of Hunan Province,situated within the central Jiangnan Orogenic Belt,is distinguished by the presence of numerous gold deposits,notably including the Wangu and Huangjindong.To systematically investigate the genetic relationships between various fluid-rock interactions and the mechanisms of gold precipitation in this area,comprehensive field geological investigations,petrographic analyses,and thermodynamic simulation have been undertaken.Geological field investigations have identified silty slate as the primary ore-bearing wall rock in northeast Hunan.This rock is notably characterized by extensive bleaching alteration,with ore bodies predominantly situated within the bleached zones.In contrast,certain ore bodies are found within carbonaceous slate,which retains its black coloration and exhibits no visible color change despite undergoing hydrothermal alteration.Petrographic analysis reveals that the bleached zones contain numerous siderite spots,which are intersected by pyrite and arsenopyrite.Conversely,in the carbonaceous slate,sulfide minerals are intimately associated with carbonaceous matter(CM).The thermodynamic simulation indicates that siderite present in the bleached zone can interact with the fluid,leading to gold precipitation through sulfidation.Similarly,chlorite within slate can also engage with the fluid to initiate sulfidation.However,the dissolution rate of carbonate exceeds that of chlorite,suggesting that carbonate exhibits higher chemical reactivity,which is more conducive to gold mineralization.The carbonaceous matter(CM) in the carbonaceous slate can enhance gold deposition by reducing the fO2 in the fluid through fluid-rock interactions,facilitating fluid boiling,and providing sites for fluid transport and precipitation.Consequently,the silty slates and carbonaceous slates in northeast Hunan are capable of promoting gold mineralization through distinct mechanisms and are thus favorable wall rocks for gold mineralization.

Graphical abstract

关键词

热液型金矿 / 褪色化蚀变 / 菱铁矿 / 碳质物 / 热力学模拟 / 金沉淀机制 / 江南造山带

Key words

hydrothermal gold deposit / fading alteration / siderite / carbonaceous matter / thermodynamic simulation / gold precipitation mechanism / Jiangnan Orogenic Belt

引用本文

引用格式 ▾
尹樱,董国军. 湘东北地区赋矿围岩与金成矿的关系[J]. 黄金科学技术, 2025, 33(02): 248-263 DOI:10.11872/j.issn.1005-2518.2025.02.245

登录浏览全文

4963

注册一个新账户 忘记密码

热液型金矿床是全球金资源的主要来源(Kesler et al.,2010Sillitoe,2020Simmons et al.,2020林鑫,2021),浅变质板岩、粉砂岩、千枚岩及碳质板岩等均可作为该类金矿床的赋矿围岩(Thomas et al.,2011Yang et al.,2016)。在成矿作用过程中,含金成矿流体与围岩发生水岩反应,造成大规模的热液蚀变(Bierlein et al.,2000Christie et al.,2003),并改变流体的pH值、氧逸度、硫逸度和离子浓度等物理化学性质(Pokrovski et al.,2014Hu et al.,2022),从而促使金沉淀。当围岩性质发生变化时,水岩反应也会随之改变,从而具有不同的金沉淀机制。因此,查明不同类型赋矿围岩与金成矿的成因联系对于金矿勘查和成矿理论研究具有重要意义。
湘东北地区位于江南造山带中部,其中发育数十个金—多金属矿床及矿化点。前人研究表明,该区赋矿围岩主要为新元古代浅变质冷家溪群和板溪群板岩,最新研究表明赋矿围岩主要为砂质—粉砂质板岩,并发育大规模褪色化蚀变(Ma et al.,2021Xu et al.,2022);部分围岩为碳质板岩,该围岩在被成矿流体交代后并无明显颜色变化(张胜伟等,2022Wang et al.,2024)。粉砂质板岩的褪色化蚀变带中发育大量菱铁矿,可为金成矿提供有利的含铁化学圈闭(Dugdale et al.,2009Cline et al.,2013),而碳质板岩中十分丰富的碳质物(CM)可通过还原含矿流体,从而降低金的溶解度(William-Jones et al.,2009;Simmons et al.,2020)。由此可知,湘东北地区金矿床赋存于2种不同性质的围岩中,且2种围岩均可通过诱发硫化作用,氧化还原等方式造成金沉淀成矿。然而,目前对于湘东北地区金矿床2种主要赋矿围岩,即粉砂质板岩与碳质板岩的地质特征及其与金成矿机制的联系仍缺乏系统探究和总结。
鉴于此,本文选取湘东北地区万古和黄金洞金矿床作为典型研究对象,在系统总结前人研究的基础上,基于野外地质调查和岩相学分析,进行地球化学热力学模拟,以探究赋矿围岩地质特征与金成矿机制的关系。

1 区域地质特征

华南陆块形成于新元古代早期(820~800 Ma)(Charvet et al.,1996Xu et al.,2007),是扬子板块与华夏板块碰撞和拼接的产物(Qiu et al.,2016孙立强,2018胡瑞忠等,2019)。显生宙以来,华南陆块经历了多期大规模岩浆—构造活动,如奥陶—志留纪的加里东运动(高彭,2016)、三叠纪的印支运动(任纪舜等,1999华仁民等,2005高彭,2016)和侏罗—白垩纪的燕山运动(Carter et al.,2001李献华等,2012Wang et al.,2013)。华南地块经历频繁而强烈的构造—岩浆作用,形成了大量的钨、锡、铋、钼、金、锑、稀土和铀等矿产资源,成为我国最重要的矿产资源聚集地(毛景文等,2012Pirajno,2013)。

江南造山带拥有数百个金(多金属)矿床,金矿资源总量超过 970 t(Deng et al.,2017Xu et al.,2017a),而湘东北地区位于江南造山带中部,是江南造山带极为重要的金—多金属矿集区(图 1)(董国军等,2008Xu et al.,2017b)。湘东北地区出露地层主要为新元古代冷家溪群、板溪群和白垩纪红盆,以及少量的古生代沉积岩(图 1)(毛景文等,1997)。冷家溪群出露面积较广,主要位于断隆带内,为一套浅变质低绿片岩相变质岩,局部夹基性和酸性火山岩,是湘东北地区主要的赋金层位(Deng et al.,2020Zhou et al.,2021)。冷家溪群由下至上依次为雷神庙组、黄浒洞组、小木坪组和坪原组,板溪群角度不整合覆盖于冷家溪群之上,包括马底驿组和五强溪组(Zhang et al.,20182020);白垩纪地层包括戴家坪组和东塘组(Zou et al.,2018)。

自新元古代以来,湘东北受扬子板块与华夏板块之间强烈的多期构造活动的影响,发生了一系列的构造—岩浆—成矿事件(许德如等,2009),形成了以NE向深大断裂为界、断隆与断陷盆地相间分布的“盆—岭构造”格局(Xu et al.,2017b周岳强等,2021)。这些盆地和断隆的边缘以NE向走滑断裂为边界,自西向东主要包括新宁—灰汤(新—灰)走滑断裂、长沙—平江(长—平)走滑断裂和醴陵—衡东走滑断裂(周岳强等,2019)。NE-NNE向盆地主要由白垩系和第四系沉积物充填,NE-NNE向断隆则主要由新元古代地层和燕山期花岗岩组成(符巩固,2009Zhou et al.,2021)。

大规模的构造演化活动往往伴随着岩浆岩体的侵入,湘东北地区的岩浆岩分布广、地表出露面积大,其中以多时代、多期次的酸性、中酸性和中性侵入岩最为发育。岩浆岩主要分布于断裂隆起带内,其中以燕山期 S 型花岗岩(160~130 Ma)沿NE向断裂分布较为典型(Guan et al.,2014Zhang et al.,2018),岩石具有富硅、富铝、富钾、中碱和高ASI的特点,属高钾钙碱性系列强过铝质花岗岩类(许德如等,2017)。此外,区内分布有少量的新元古代晋宁期、早古生代加里东期和早中生代印支期岩浆岩(Xu et al.,2017bDeng et al.,2019)。

湘东北燕山期 S 型花岗岩代表性岩体有幕阜山、连云山、金井、望湘、蕉溪岭、七宝山和龙王排等岩体,大量年代学研究表明,燕山期 S 型花岗岩成岩年龄介于 183~129 Ma 之间(湖南省地质矿产局,1988李鹏春,2006);新元古代晋宁期岩浆岩以形成于929 Ma的长三背岩体(王孝磊等,2004)和形成于845~816 Ma 之间的葛藤岭、大围山和张邦源岩体(马铁球等,2009)为主,具备典型的S型花岗岩特征(Deng et al.,2019);加里东期的岩浆岩主要由板杉铺、宏夏桥和张坊岩体组成(李鹏春,2006),湘东北板杉铺和宏夏桥岩体的侵位时代为 434~418 Ma(关义立等,2013),板杉铺岩体成岩年龄为 432~418 Ma(张菲菲等,2010李建华等,2015)。印支期花岗质岩出露面积很小,呈小岩柱产出,分布在望湘岩体的东北部及其南东侧,岩体锆石 U-Pb 年龄为 233 Ma和 250 Ma(湖南省地质矿产局,1988)。除花岗质岩浆岩以外,小规模的基性岩在区域内也有出露,其成岩年龄为 136~83 Ma(许德如等,2017)。

湘东北地区由于岩浆—构造活动异常强烈,形成了金、铅、锌、钨、铜、钴、钼、铌、钽、铍及多种非金属矿产,是我国重要的金—多金属矿集区(董国军等,2008)。矿区发育有仁里、永享、上大洲—南江桥锂铌钽矿、虎形山钨铍矿和断峰山铌钽矿等锂—铍—铌—钽稀有金属矿床,各种规模大小的铅锌矿床,如桃林、粟山、三墩、梅树湾、五角和蛇形铅锌矿等,以及已探明的诸多金矿床,其中金矿床和矿化点约为125个(Deng et al.,2017Xu et al.,2017b),代表性金矿床主要有万古、黄金洞和雁林寺矿床等。

2 矿床地质特征

万古和黄金洞矿床是江南造山带重要的金矿床,位于长沙—平江断裂带西北侧和东侧,万古金矿床的金储量为85 t,金品位为3×10-6~73×10-6(平均金品位为6.8×10-6),黄金洞金矿床已探明金储量为 80 t,金品位为 4×10-6~10×10-6(平均金品位为5×10-6)(Xu et al.,2017bDeng et al.,2020Zhou et al.,2021),均达到大型金矿的规模。

万古金矿床主要出露地层为新元古代冷家溪群坪原组以及以角度不整合覆盖于其上的白垩系和第四系(图2),新元古代冷家溪群坪原组为一套浅变质碎屑岩,总体走向呈NW向,倾向为NE-NNE向,倾角中等;坪原组走向为NW-NWW向,倾向为NE向,倾角为15°~60°(图2)(Deng et al.,2017)。基于前人详细的构造和地质年代学研究,万古金矿床最重要的控矿构造为NWW向断层,其形成于早古生代,并被后期晚中生代区域构造应力重新活化(傅昭仁等,1999Zhou et al.,2021)。NE向断层也是万古金矿床重要的构造,大致呈等距分布,切穿EW-NWW向矿体,倾向SE,沿走向及倾向多呈舒缓波状,产状变化较大,并显示出多期活化的特征(许德如等,2006)。矿区未见岩浆岩出露,但物探资料表明,其深部可能存在隐伏岩体(文志林等,2016)。

黄金洞金矿床地处NE向长沙—平江断裂带东侧(下盘),矿区的主要含矿地层为新元古代冷家溪群 NE-NNE 向小木坪组,该地层也是黄金洞矿区的主要出露地层(图3)。小木坪组产状变化较大,根据岩性的不同可将其划分为两段。第一段下层为青灰—浅灰中—厚层绢云母板岩、变质细砂岩、粉砂质板岩以及凝灰质、粉砂质板岩;中层为灰—浅灰—绿色条带状凝灰质砂质板岩、砂质板岩、绢云母板岩和变质砂岩;上层为灰青—绿黄—灰色较厚的绢云母板岩;顶层为较厚的砂质板岩和夹有变质砂岩的条带状板岩。第二段是含金矿脉的主要赋存层位,岩性较单一,下层为绿灰—浅灰色的绢云母板岩和砂质板岩以及绢云母板岩和变质细砂岩夹层;上层为灰青色砂质板岩、绢云母板岩和变质石英粉砂岩(黄强太等,2010Deng et al.,2020)。黄金洞金矿床主要以 NWW 向和 NE 向断裂为主(图3)。其中,NWW向断裂是黄金洞矿床的主要控矿构造,其产状与地层相似,NE 向断裂切割NWW向断裂。此外,还发育一系列NWW向至EW向的倒转褶皱,控制着矿体的分布。矿区未见岩浆岩体出露,离矿区最近的侵入体是位于西南方向约12 km 处的连云山花岗岩,成岩年龄约为142 Ma(许德如等,2017)。

万古和黄金洞金矿床具有相似的矿石类型,主要包括蚀变岩型[图4(a)]、石英脉型[图4(b)]以及少量的构造角砾岩型(毛景文等,1997)。围岩蚀变现象普遍发育,蚀变种类较多,对称分布在石英脉及其两侧,主要发育有硅化、绢云母化、硫化、碳酸岩化和绿泥石等(邓腾,2018周岳强等,2021)。矿石矿物主要为毒砂和黄铁矿,含少量方铅矿、闪锌矿、辉锑矿和自然金等,脉石矿物以石英为主,还有少量的白钨矿、绿泥石、绢云母、磷灰石、金红石、菱铁矿、方解石和铁白云石等(Zhang et al.,2018Zhou et al.,2021)。据前人研究,万古和黄金洞金矿床热液活动可划分为5个阶段:(1)石英—碳酸盐阶段;(2)白钨矿—石英阶段;(3)毒砂—黄铁矿—石英阶段;(4)多硫化物—石英阶段;(5)石英—方解石阶段。其中,毒砂—黄铁矿—石英阶段和多硫化物—石英阶段为成矿阶段(Deng et al.,2017Ma et al.,2021)。该区成矿流体为还原型、弱酸性—中性和中低温—中低盐度的变质流体(袁梓焜等,2024),且具有富CO2和硫的特征(Deng et al.,2020Ma et al.,2021)。流体温度为157~342 ℃、盐度(质量分数)范围为1.60%~11.23%,流体中阳离子主要为 Na+、K+、Ca2+、Mg2+ 和Fe3+等,阴离子主要为S2-、F-和Cl-等(刘英俊等,1991李杰等,2011)。

矿区中与矿体直接接触的围岩主要为粉砂质板岩,被流体交代蚀变后围岩的颜色从灰绿色变为灰白色,被称为“褪色化蚀变”[图4(c)]。褪色范围分布在石英脉两侧几米到几百米不等的范围内,但随着与脉体距离的增加,褪色化蚀变的强度越来越弱。褪色化蚀变一直被当作矿区重要的找矿标志(Xu et al.,2017b)。最新研究表明,该围岩主要为富铁围岩,成矿前形成的菱铁矿和绢云母为金矿化构建了适宜的化学圈闭(Ma et al.,2021)。部分赋矿围岩为碳质板岩[图4(d)],尽管其内存在丰富的硫化物,但仍保持原始黑色,并未“褪色”。赋存于褪色化粉砂质板岩和碳质板岩的矿石均达到工业品位,具有开采价值。

3 样品与分析方法

本文对江南造山带湘东北地区的万古和黄金洞金矿床开展详细的野外地质调查,分别从矿化的碳质板岩、富铁蚀变板岩和石英(碳酸盐)脉中采集了65个、72个和68个样品。选取新鲜且具有代表性的样品制成薄片,在显微镜下进行岩(矿)相学观察,并基于矿相学研究结果,进行了地球化学热力学模拟计算。

3.1 岩相学和扫描电镜分析

矿物岩相学分析工作在东华理工大学核资源与环境国家重点实验室完成,分析仪器包括配备能谱(EDS,Oxford AZtec X-Max 80)的电子显微镜(Leica DM2700P)和扫描电子显微镜(SEM,Zeiss Sigma 300)。对于CM的SEM分析,薄切片使用金涂层(厚度为10~20 nm),而硫化物和硅酸盐采用碳涂层(厚度为10~20 nm)。分辨率设置为 1.0 nm。照片由电子束曝光机在加速电压为5~20 kV、灯丝电流为240 mA的条件下拍摄。

3.2 地球化学热力学模拟

地球化学模拟利用Workbench® Professional 12(GWB)软件包进行(Bethke,2022),热力学数据依据thermo.com.v8.r6+数据库中提供的各种物质的反应热力学性质和lgK值。Au、As和Fe的数据来源于SUPCRT92 软件(Johnson et al.,2016)。所有数据均被输入HCh热力学软件中的Unitherm数据库(Shvarov et al.,1999),以计算相关反应的lgK值,然后将计算结果纳入GWB数据库进行地球化学建模。

利用PHASE2模块来创建相图,包括在pH-lgfO2(g)和lgfS2(g)-lgfO2(g)坐标下金在流体中的赋存形式以及含铁矿物的变化。利用REACT模块来模拟含矿流体与主岩中的主要矿物(包括石墨、菱铁矿和绿泥石)之间的相互作用。

4 结果分析

4.1 岩相学

粉砂质板岩发育大规模的褪色化蚀变,其与金矿化一同呈对称式分布于石英—碳酸盐脉两侧[图4(c)],蚀变过程中板岩由灰绿色转变为灰黄—灰白色。石英—碳酸盐脉主要由石英、铁白云石、白云石和绢云母组成[图5(a)],含少量的黄铁矿和闪锌矿等硫化物。褪色化蚀变带中发育有大量菱铁矿、绢云母及少量绿泥石[图5(a)、5(b)],菱铁矿呈圆状或椭圆状、斑点状分布(50~300 µm),局部沿板岩劈理定向生长的菱铁矿表现出微弱的拉长和拖曳现象,从石英—碳酸盐脉向两侧菱铁矿逐渐减少。菱铁矿与硫化物关系密切,且被黄铁矿和毒砂等含金硫化物明显切穿[图5(b)],局部可见自然金与黄铁矿共生[图5(c)]。碳质板岩矿物主要为碳质物、长石、石英、绢云母、金红石和黑云母[图5(d)],其中碳质物与硫化物密切相关[图5(e)]。碳质板岩中的碳质物分布十分广泛,且常与黑云母、硫化物和金红石共同构成聚集体或细脉[图5(f)]。

4.2 地球化学热力学模拟

本次研究的流体为Au-Fe-As-Na-Ca-K-Mg-Al-Si-S-C-Cl-H-O体系,根据前人的毒砂温度计(Deng et al.,20172020),将温度设置为250 ℃,流体成分参考Ma et al.(2021)Wang et al.(2024)。Au+、Na+和Fe2+含量分别限定为100×10-9、1 mol/kg和1×10-6,S的浓度设置为0.01 mol/kg。由于万古和黄金洞矿床中的主要矿石矿物为黄铁矿和毒砂,因此该矿物组合可限定lgfO2(g)值。由于矿区发育高岭石,将pH值设定为4。虽然成矿前阶段流体中CO2含量很高(Ma et al.,2021Xu et al.,2022),但成矿阶段含矿流体中CO2含量仍较低(Deng et al.,2020),因此将HCO3-浓度设定为1×10-4 mol/kg的低值。SiO2(aq)、Al3+、H2AsO4-、Ca2+和K2+的浓度分别基于流体与石英、白云母、毒砂、方解石和高岭石的元素平衡计算所得。

图6(a)所示,在相对还原条件下,Au主要以AuHS(aq)和Au(HS)2-的形式存在;在相对氧化环境下,Au则以AuCl32-和AuOH(aq)形式存在。当流体为中性—弱碱性(pH=5.0~7.5)且lgfO2(g)=-34~-40(从HM+1.3到HM-4.7)时,金的溶解度最高,当S浓度为0.01 mol/kg时,金溶解度大于1 000×10-9图6(a)]。在本研究设定的初始条件[pH=4,lgf O2(g)受控于黄铁矿和毒砂]下,Au主要以AuHS(aq)和Au(HS)2-的形式存在,当S浓度为0.01 mol/kg时,金溶解度约为250×10-9。降低fO2(g)值将导致Au溶解度降低,而Au溶解度随着pH值的升高先增加再降低,金溶解度在pH=6.5时达到最高。

为了评估水岩反应对金沉淀的影响,进行水岩反应路径模拟。将含矿流体中的初始S和Au浓度分别设置为0.01 mol/kg和100×10-9,与菱铁矿、绿泥石和石墨(代表CM)反应[图6(b)~6(d)]。对于约0.8 g菱铁矿与含矿流体的反应,流体中约96%的金发生沉淀,lgfO2(g)值增加至大约-34(HM+1.3)[图6(b)]。反应过程中形成大量黄铁矿和毒砂,导致流体中S含量下降99%,使得AuHS(aq)和Au(HS)2-的稳定性被破坏,从而造成金沉淀。当含矿流体与绿泥石发生反应时,含量为0.8 g的绿泥石就可导致流体中90%的Au发生沉淀,90%的S被消耗。与菱铁矿不同的是,含矿流体与绿泥石发生反应时会导致lgfO2(g)值降低至-38.2(HM-2.9)[图6(c)]。当含矿流体与少量石墨(约0.01 g)发生反应时,流体lgfO2(g)值降低至约-39(HM-3.7),从而使得含矿流体中约60%的Au沉淀。由于反应过程中仅形成少量毒砂,因此S含量通常保持不变[图 6(d)]。

5 讨论

5.1 粉砂质板岩中的金矿化

金矿床可赋存于不同类型的蚀变带中,包括碳酸盐化、硅化、绢云母化、钠长石化、硫化以及绿泥石化等(Bierlein et al.,2000Wang et al.,2024)。湘东北地区金矿床主要赋存于粉砂质板岩褪色化蚀变带中,金矿体与褪色化蚀变带重叠且矿体范围小于蚀变带,其中蚀变岩型矿石为达到工业品位的蚀变粉砂质板岩(Xu et al.,2022)。

结合岩相学观察及前人研究,与未蚀变的粉砂质板岩相比,褪色化蚀变带中发育大量的菱铁矿和绢云母[图5(a)、5(b)],指示弱酸性流体特征,而绿泥石的含量则显著减少,这也是造成板岩“褪色”的主要原因。褪色化蚀变带中的菱铁矿颗粒被黄铁矿和毒砂等含金硫化物明显切穿[图5(b)],表明湘东北地区普遍发育的褪色化蚀变形成于成矿前。此外,Ma et al.(2021)Xu et al.(2022)通过对比黄金洞和万古金矿床中粉砂质板岩与褪色化蚀变带中的主微量元素,发现蚀变过程中流体并没有提供额外的Fe2+,由此得知菱铁矿中的Fe2+来自于围岩中的绿泥石。前人认为湘东北地区金矿床的形成与多期热液活动密切相关(Xu et al.,2017aZhou et al.,2021),而成矿前流体具有富CO2、弱酸性的特征,在一定条件下,CO2可通过反应形成硬配体HCO3-和CO32-,二者与Fe2+结合生成菱铁矿。

金在自然界中的主要存在形式为 Au+,作为一种软金属,其通常优先与HS-、S2O32-、CN-和 SCN-等软配体结合(Phillips et al.,2004)。大多数金成矿流体为还原和近中性环境,Au+更易与 HS-结合(Vlassopoulos et al.,1990Williams-Jones et al.,2009),因此金成矿流体中的Au常以Au-S络合物的形式迁移,如AuHS(aq)和 Au(HS)2-等[图6(a)]。含硫量、pH值、Eh值和温度等流体物理化学性质的变化则会破坏含金络合物的稳定性,从而致使金沉淀(Pokrovski et al.,2014Fougerouse et al.,2016)。由前所述,湘东北地区成矿前褪色化蚀变主要由菱铁矿化和绢云母化所引起,其中菱铁矿与金矿化密切相关。热力学模拟显示,当流体与菱铁矿发生反应时[图6(b)],流体中的Au含量显著降低,且黄铁矿和毒砂逐渐析出。该过程中流体的硫含量和氧逸度均会发生相应变化,尤其是由于黄铁矿和毒砂大量沉淀所导致的硫含量降低(即硫化作用),将破坏Au-S络合物的稳定性,造成金沉淀。然而,绿泥石中同样含铁,模拟表明当含金流体与绿泥石发生反应时[图6(c)],也可通过硫化作用造成流体中金含量的降低,且湘东北地区未发生褪色化蚀变的粉砂质板岩中含有大量的绿泥石,但在其中却未发现成规模的工业矿体。前人研究表明,流体中的金达到过饱和状态便可析出沉淀,因此其沉淀效率仅与水岩反应速率有关(Brown,1989Simmons et al.,2020)。此外,前人对碳酸盐和硅酸盐矿物的溶解速率进行了大量研究,结果表明碳酸盐矿物与酸性流体的反应速率较快,而与碱性流体的反应较慢(Duckworth et al.,2004),且大多高于流体与硅酸盐的反应速率(Brantley,2008),例如:在温度为25 ℃条件下,菱铁矿的溶解速率是绿泥石的104~105 倍[图7(a)、7(b)]。在硅酸盐矿物中,层状硅酸盐(包括绿泥石)的反应活性最低[图7(b)]。由此可知,碳酸盐的化学反应活性显著高于硅酸盐,导致金矿体更倾向赋存于广泛发育含铁碳酸盐化的褪色化蚀变带中(Wang et al.,2024)。

因此,成矿前褪色化蚀变带中广泛发育的菱铁矿可为金成矿提供有利的含铁化学圈闭,通过与成矿流体之间的水—岩反应,诱发硫化作用,促使金沉淀,使得含金硫化物在碳酸盐矿物附近聚集(Xu et al.,2022)。该过程主要通过降低流体中的还原硫含量从而破坏 AuHS(aq)和 Au(HS)2-络合物的稳定性(Williams-Jones et al.,2009),造成金与硫化物共同沉淀(Simmons et al.,2020)。由于碳酸盐具有更高的化学反应活性,使得矿体主要赋存于发生褪色化蚀变的粉砂质板岩中。

5.2 碳质物(CM)在金沉淀中的作用

许多热液型金矿中均发现了碳质物(CM),且碳质物可形成于成矿前或成矿期(Cox et al.,1995;Petrella al.,2021)。前人研究认为,成矿前形成的碳质物因具有还原性而构成了有利于金成矿的化学圈闭,通过破坏流体中Au的硫络合物形成CO2和H2S等产物,有利于金沉淀(Steadman et al.,2014Fuchs et al.,2021)。反应式如下:

4Au(HS)2(aq)+C(s)+4H+(aq)+2H2O(l)=4Au(s)+CO2(aq)+8H2S(aq)

本次野外地质调查和岩相学工作表明,湘东北地区的碳质物主要赋存于碳质板岩中,表现出明显的层控型,可知其形成于成矿前。本次地球化学热力学模拟表明,当流体与碳质物发生水岩反应时,流体氧逸度降低,从而造成金从流体中过饱和沉淀[图6(a)],因此碳质板岩也是金成矿的有利围岩。前人研究还表明,由碳质物形成的CH4不仅具有更强的还原性(Williams-Jones,2007;Fuchs et al.,2021),还能促进成矿流体沸腾(Naden et al.,1989Kříbek et al.,2015),因此有利于金的高效沉淀。此外,碳质板岩在构造变形中更易形成破碎带,为成矿流体提供了理想的通道和矿化空间(Upton et al.,2008),也有利于金成矿作用。

综上所述,褪色化蚀变板岩中发育大量菱铁矿和碳质板岩,菱铁矿和碳质板岩中的碳质物均可通过不同机制影响金沉淀,二者在金成矿过程中发挥着重要作用,且湘东北地区金矿床主要赋存于褪色化蚀变带和碳质板岩中。因此,围岩与金成矿关系十分密切,根据前人研究,湘东北地区金矿床主要受构造控制(Xu et al.,2017aDeng et al.,20172020),但不同性质的围岩也可通过不同机制影响金沉淀。

6 结论

(1)湘东北地区金矿床主要赋存于新元古代浅变质粉砂质板岩的褪色化蚀变带中,褪色化蚀变带发育大规模的菱铁矿,其与含金流体发生水岩反应,通过诱发硫化作用造成金沉淀。

(2)部分金矿体赋存在碳质板岩中,其中含有大量的碳质物(CM),可与流体发生反应,造成流体中氧逸度降低,从而导致金溶解度下降,促进金沉淀。同时碳质板岩中的碳质物还可通过促进流体沸腾和提供流体通道来促进金矿化。

参考文献

[1]

Alkattan MOelkers E HDandurand J L,et al,2002.An experimental study of calcite dissolution rates at acidic conditions and 25 ℃ in the presence of NaPO3 and MgCl2 [J].Chemical Geology,190(1/2/3/4):291-302.

[2]

Bethke C M2022.Geochemical and Biogeochemical Reaction Modeling[M].London:Cambridge University Press.

[3]

Bierlein F PArne D CMcKnight S,et al,2000.Wall-rock petrology and geochemistry in alteration halos associated with mesothermal gold mineralization,Central Victoria,Australia[J].Economic Geology95(2):283-311.

[4]

Brandt FBosbach DKrawczyk-Bärsch E,et al,2003.Chlorite dissolution in the acid pH-range:A combined microscopic and macroscopic approach[J].Geochimica et Cosmochimica Acta67(8):1451-1461.

[5]

Brantley S L2008.Kinetics of Mineral Dissolution[M]//Kinetics of Water-Rock Interaction.New York:Springer.

[6]

Brown K L1989.Kinetics of gold precipitation from experimental hydrothermal sulfide solutions[J].Economic Geology Monograph,6:320-327.

[7]

Busenberg EPlummer L N1986.A comparative study of the dissolution and precipitation kinetics of calcite and aragonite[J].Studies in Diagenesis,1578:139-168.

[8]

Carter ARoques DBristow C,et al,2001.Understanding Mesozoic accretion in Southeast Asia:Significance of Triassic thermotectonism(Indosinian orogeny) in Vietnam[J].Geology29(3):211-214.

[9]

Charvet JShu LShi Y,et al,1996.The building of South China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers[J].Journal of Southeast Asian Earth Sciences13(3/4/5):223-235.

[10]

Christie A BBrathwaite R L2003.Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits,Reefton goldfield,South Island,New Zealand[J].Mineralium deposita,38:87-107.

[11]

Chou LGarrels R MWollast R1989.Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J].Chemical Geology78(3/4):269-282.

[12]

Cline J SMuntean J LGu X X,et al,2013.A comparison of carlin-type gold deposits:Guizhou Province,golden triangle,Southwest China,and Northern Nevada,USA[J].Earth Science Frontiers,(1):1-18.

[13]

Cox S FSun S SEtheridge M A,et al,1995.Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits,Wattle Gully Mine,Central Victoria,Australia[J].Economic Geology90(6):1722-1746.

[14]

Deng TXu DChi G,et al,2017.Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.

[15]

Deng TXu DChi G,et al,2019.Revisiting the ca.845~820 Ma S-type granitic magmatism in the Jiangnan Orogen:new insights on the Neoproterozoic tectono-magmatic evolution of South China[J].International Geology Review,61(4):383-403.

[16]

Deng TXu DChi G,et al,2020.Caledonian(Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J].Ore Geology Reviews,124:1-20.

[17]

Deng Teng2018.Introcontinental Tectono-Magmatic Reactivation and Its Control Over Gold Mineralization in Northeastern Hunan Province,South China[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.

[18]

Dong GuojunXu DeruWang Li,et al,2008.Determination of mineralizing ages on gold ore deposits in the eastern Hunan Province,South China and isotopic tracking on ore-forming fluids—Re-discussing gold ore deposit type[J].Geotectonica et Metallogenia32(4):482-491.

[19]

Duckworth O WMartin S T2004.Role of molecular oxygen in the dissolution of siderite and rhodochrosite[J].Geochimica et Cosmochimica Acta68(3):607-621.

[20]

Dugdale A LWilson C J LLeader L D,et al,2009.Carbonate spots:Understanding the relationship to gold mineralization in central Victoria,southeastern Australia[J].Mineralium Deposita,44:205-219.

[21]

Fougerouse DMicklethwaite STomkins A G,et al,2016.Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J].Geochimica et Co-smochimica Acta,178:143-159.

[22]

Fu Gonggu2009.Ductile Shear Deformation in Northeastern Hunan and Its Constraints on Gold Mineralization[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.

[23]

Fuchs SSchumann DMartin R F,et al,2021.The extensive hydrocarbon-mediated fixation of hydrothermal gold in the Witwatersrand Basin,South Africa[J].Ore Geology Reviews,138:1-21.

[24]

Fu ZhaorenLi ZijinZheng Dayu1999.Structural pattern and tecto-nic evolution of NNE-trending strike-slip orogenic belt in the border region of Hu’nan and Jiangxi Provinces[J].Earth Science Frontiers6(4):263-272.

[25]

Gao Peng2016.A geochemical study of Mesozoic granites from the Nanling Range in South China[D].Beijing:University of Science and Technology of China.

[26]

Guan YYuan CSun M,et al,2014.I-type granitoids in the eastern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China[J].Lithos,206:34-51.

[27]

Guan YiliYuan ChaoLong Xiaoping,et al,2013.Early Paleozoic Intracontinental Orogeny of the Eastern South China Block:Evidence from I-type granitic plutons in the SE Yangtze Block[J].Geotectonica et Metallogenia37(4):698-720.

[28]

Hu RuizhongLuo JinchengChen Youwei,et al,2019.Several progresses in the study of uranium deposits in South China[J].Acta Petrologica Sinica35(9):2625-2636.

[29]

Hu SWang XMa Y,et al,2022.Global research trends in pediatric COVID-19:A bibliometric analysis[J].Frontiers in Public Health,10:1-12.

[30]

Hua RenminChen PeirongZhang Wenlan,et al,2005.Three major metallogenic events in Mesozoic in South China[J].Mineral Deposits24(2):99-107.

[31]

Huang QiangtaiXia BinCai Zhourong,et al,2010.Study on tectonic and metallogenic law in Huangjindong gold ore field,Hunan Province[J].Gold31(2):9-13.

[32]

Hunan Provincial Bureau of Geology and Mineral Resources,1988.Regional Geology of Hunan Province [M].Beijing:Geological Publishing House.

[33]

Johnson C ADay W CRye R O2016.Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region[J]. Economic Geology111 (8) :2017-2032.

[34]

Kesler S EWilkinson B H2010.Global hydrothermal gold resources for the next millennium[J].Society of Economic Geologists,15:5-18.

[35]

Kříbek BSýkorová IMachovič V,et al,2015.The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa[J].Precambrian Research,270:300-317.

[36]

Li JianhuaZhang YueqiaoDong Shuwen,et al,2015.LA-MC-ICPMS zircon U-Pb geochronology of the Hongxiaqiao and Banshanpu granitoids in eastern Hunan Province and its geological implications[J].Acta Geoscientia Sinica36(2):187-196.

[37]

Li JieChen BiheAn Jianghua,et al,2011.Characteristics of fluid inclusions of the Huangjindong gold deposit,Hunan Province[J].South China Geology27(2):163-168.

[38]

Li Pengchun2006.Magmatism of Phanerozoic Granitoidsin Southeastern Hunan Province,Chinaand its Evolution Regularity[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.

[39]

Li XianhuaLi WuxianHe Bin2012.Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:Observations,interpretations and tests[J].Bulletin of Mineralogy, Petrology and Geochemistry31(6):543-559.

[40]

Lin Xin2021.A review of study of mineralogy of stibnite in Hydrothermal gold deposits[J].Acta Geologica Sichuan41(48):78-82.

[41]

Liu YingjunJi JunfengSun Chengyuan,et al,1991.Geological and geochemical characteristics of Huangjindong turbidite-hosted gold deposit,Hunan Province[J].Contributions to Geology and Mineral Resources Research6(1):1-13.

[42]

Ma TieqiuChen LixinBai Daoyuan,et al,2009.Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan[J].Geology in China26(1):65-73.

[43]

Ma WDeng TXu D,et al,2021.Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization[J].Ore Geology Reviews,139:104479.

[44]

Mao JingwenLi HongyanXu Yu,et al,1997.Geology and Genesis of Gold Deposits in Wangu Area,Hunan[M].Beijing:Atomic Energy Press.

[45]

Mao JingwenZhou ZhenhuaFeng Chengyou,et al,2012.A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J].Geology in China39(6):1437-1471.

[46]

Naden JShepherd T J1989.Role of methane and carbon dioxide in gold deposition[J].Nature342(6251):793-795.

[47]

Petrella LThébaud NEvans K,et al,2021.The role of competitive fluid-rock interaction processes in the formation of high-grade gold deposits[J].Geochimica et Cosmochimica Acta,313:38-54.

[48]

Phillips G NEvans K A2004.Role of CO2 in the formation of gold deposits[J].Nature429(6994):860-863.

[49]

Pirajno F2013.Yangtze craton,cathaysia and the south China block[J].The Geology and Tectonic Settings of China’s Mineral Deposits,2013:127-247.

[50]

Plummer LWigley TParkhurst D1978.The kenetics of calcite dissolution in CO2-water systems at 50 ℃ to 60 ℃ and 0.0 to 1.0 atm CO2 [J].American Journal of Science278(2):179-216.

[51]

Pokrovski G SAkinfiev N NBorisova A Y,et al,2014.Gold speciation and transport in geological fluids:Insights from experiments and physical-chemical modelling[J].Geological Society402(1):9-70.

[52]

Qiu LYan DTang S,et al,2016.Mesozoic geology of southwestern China:Indosinian foreland over thrusting and subsequent deformation[J].Journal of Asian Earth Sciences,122:91-105.

[53]

Ren JishunNiu BaoguiLiu Zhigang1999.soft collision,superposition orogeny and polycyclic suturing[J].Earth Science Frontiers6(3):85-93.

[54]

Rickard DSjoeberg E L1983.Mixed kinetic control of calcite dissolution rates[J].American Journal of Science283(8):815-830.

[55]

Schott JBrantley SCrerar D,et al,1989.Dissolution kinetics of strained calcite[J].Geochimica et Cosmochimica Acta53(2):373-382.

[56]

Shiraki RRock P ACasey W H2000.Dissolution kinetics of calcite in 0.1 M NaCl solution at room temperature: An atomic force microscopic(AFM) study[J].Aquatic Geochemistry,6:87-108.

[57]

Shvarov Y VBastrakov E1999.HCh:A software package for geochemical equilibrium modelling.User’s guide[J].Australian Geological Survey Organisation,25:61.

[58]

Sillitoe R H2020.Gold Deposit Types:An Overviews[M]//Sillitoe R H,Goldfarb R J,Robert F,et al,eds.Geology of the World’s Major Gold Deposits and Province.Littleton:Society of Economic Geologists.

[59]

Simmons S FTutolo B MBarker S L L,et al,2020.Hydrothermal Gold Deposition in Epithermal,Carlin,and Orogenic Deposits[M]//Sillitoe R H,Goldfarb R J,Robert F,et al,eds.Geology of the World’s Major Gold Deposits and Province.Littleton:SEG Special Publication.

[60]

Sjoberg E L1978.Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperatures[J]. Stockholm Contributions in Geology32(1):1-92.

[61]

Sjoberg E LRickard D1984.The influence of experimental design on the rate of calcite dissolution[J].Geochimica et Cosmochimica Acta47(12):2281-2285.

[62]

Steadman J ALarge R RDavidson G J,et al,2014.Paragenesis and composition of ore minerals in the Randalls BIF-hosted gold deposits,Yilgarn Craton,western Australia:Implications for the timing of deposit formation and constraints on gold sources[J].Precambrian Research,243:110-132.

[63]

Sun Liqiang2018.Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization[D].Nanjing:Nanjing University.

[64]

Thomas H VLarge R RBull S W,et al,2011.Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and reefs at Bendigo gold mine,Australia:Insights for ore genesis[J].Economic Geology106(1):1-31.

[65]

Upton PCraw D2008.Modelling the role of graphite in development of a mineralised mid-crustal shear zone,Macraes mine,New Zealand[J].Earth and Planetary Science Letters266(3):245-255.

[66]

Vlassopoulos DWood S AMucci A1990.Gold speciation in natural waters:II.The importance of organic complexing—Experiments with some simple model ligands[J].Geochimica et Cosmochimica Acta54(6):1575-1586.

[67]

Wang QDeng TXu D,et al,2024.Genetic association between carbonates and gold precipitation mechanisms in the Jinshan deposit,eastern Jiangnan orogen[J].Geological Society of America Bulletin136(9/10):4195-4217.

[68]

Wang XiaoleiZhou JinchengQiu Jiansheng,et al,2004.Petrogenesis of neoproterozoic peraluminous granites from northeastern Hunan Province:Chronological and geochemical constraints[J].Geological Review50(1):65-76.

[69]

Wang YFan WZhang G,et al,2013.Phanerozoic tectonics of the South China Block:Key observations and controversies[J].Gondwana Research23(4):1273-1305.

[70]

Wen ZhilinDeng TengDong Guojun,et al,2016.Characteristics of ore-controlling structures of Wangu gold deposit in northeastern Hunan Province[J].Geotectonica et Metallogenia40(2):281-294.

[71]

Williams-Jones A EBowell R JMigdisov A A2009.Gold in solution[J].Elements5(5):281-287.

[72]

Xu DChi GZhang Y,et al,2017b.Yanshanian(Late Mesozoic) ore deposits in China—An introduction to the special issue[J].Ore Geology Reviews,88:481-490.

[73]

Xu DDeng TChi G,et al,2017a.Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.

[74]

Xu DGu XLi P,et al,2007.Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences29(5/6):637-650.

[75]

Xu DeruChen GuanghaoXia Bin,et al,2006.The caledonian adakite-like granodiorites in Banshanpu area,eastern Hunan Province,South China:Petrogenesis and geological significance[J].Geological Journal of China Universities12(4):507-521.

[76]

Xu DeruDeng TengDong Guojun,et al,2017.Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province:Implications for petrogenesis and tectonic setting associated with poly-metallic mineralization[J].Earth Science Frontiers24(2):104-122.

[77]

Xu DeruWang LiLi Pengchun,et al,2009.Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implications[J].Acta Petrologica Sinica25(5):1056-1078.

[78]

Xu KXu DDeng T,et al,2022.Genesis of altered slate type ores in the Huangjindong gold deposit,Jiangnan Orogenic Belt,South China[J].Journal of Geochemical Exploration,241:107047.

[79]

Yang LDeng JLi N,et al,2016.Isotopic characteristics of gold deposits in the Yangshan Gold Belt,West Qinling,central China:Implications for fluid and metal sources and ore ge-nesis[J].Journal of Geochemical Exploration,168:103-118.

[80]

Yuan ZikunShao YongjunLiu Qingquan,et al,2024.Genesis of Jiangdong gold deposit in Wangu gold field,Northeast Hunan:Constraints from fluid inclusions and H-O isotope[J].Gold Science and Technology32(4):559-578.

[81]

Zhang FeifeiWang YuejunFan Weiming,et al,2010.LA-ICPMS zircon U-Pb geochronology of late Early Paleozoic granites in eastern Hunan and western Jiangxi Provinces,South China[J].Geochimica39(5):414-426.

[82]

Zhang LGroves D IYang L,et al,2020.Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Mineralium Deposita55(2):363-380.

[83]

Zhang LYang L QGroves D I,et al,2018.Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.

[84]

Zhang ShengweiDeng TengXu Deru,et al,2022.Genesis of carbonaceous material in the Wangu gold deposit and its relationship with gold mineralization[J].Gold Science and Technology30(6):835-847.

[85]

Zhou YXu DDong G,et al,2021.The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:1-16.

[86]

Zhou YueqiangDong GuojunXu Deru,et al,2021.Scheelite Sm-Nd age of the Huangjindong Au deposit in Hunan and its geological significance[J].Geochimica50(4):381-397.

[87]

Zhou YueqiangXu DeruDong Guojun,et al,2019.Structural Evolution of the Changsha-Pingjiang fault zone and its controlling on mineralization[J].Journal of East China Institute of Technology(Natural Science Edition)42(3):201-208.

[88]

Zou SZou FNing J,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.

[89]

邓腾,2018.湘东北地区陆内构造—岩浆活化及其对金成矿作用的控制[D].广州:中国科学院广州地球化学研究所.

[90]

董国军,许德如,王力,等,2008.湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J].大地构造与成矿学32(4):482-491.

[91]

符巩固,2009.湘东北地区韧性剪切变形作用及其对金成矿的制约[D].广州:中国科学院广州地球化学研究所.

[92]

傅昭仁,李紫金,郑大瑜,1999.湘赣边区NNE向走滑造山带构造发展样式[J].地学前缘6(4):263-272.

[93]

高彭,2016.华南陆块南岭地区中生代花岗岩地球化学研究[D].北京:中国科学技术大学.

[94]

关义立,袁超,龙晓平,等,2013.华南地块东部早古生代的陆内造山作用:来自I型花岗岩的启示[J].大地构造与成矿学37(4):698-720.

[95]

胡瑞忠,骆金诚,陈佑纬,等,2019.华南铀矿床研究若干进展[J].岩石学报35(9):2625-2636.

[96]

湖南省地质矿产局,1988.湖南省区域地质志[M].北京:地质出版社.

[97]

华仁民,陈培荣,张文兰,等,2005.论华南地区中生代3次大规模成矿作用[J].矿床地质24(2):99-107.

[98]

黄强太,夏斌,蔡周荣,等,2010.湖南省黄金洞金矿田构造与成矿规律探讨[J].黄金31(2):9-13.

[99]

李建华,张岳桥,董树文,等,2015.湘东宏夏桥和板杉铺岩体LA-MC-ICPMS锆石U-Pb年龄及地质意义[J].地球学报36(2):187-196.

[100]

李杰,陈必河,安江华,等,2011.湖南黄金洞金矿成矿流体包裹体特征[J].华南地质与矿产27(2):163-168.

[101]

李鹏春,2006.湘东北地区显生宙花岗岩岩浆作用及其演化规律[D].广州:中国科学院广州地球化学研究所.

[102]

李献华,李武显,何斌,2012.华南陆块的形成与Rodinia超大陆聚合—裂解——观察、解释与检验[J].矿物岩石地球化学通报31(6):543-559.

[103]

林鑫,2021.热液金矿中辉锑矿矿物学研究综述[J].四川地质学报41(48):78-82.

[104]

刘英俊,季峻峰,孙承辕,等,1991.湖南黄金洞元古界浊积岩型金矿床的地质地球化学特征[J].地质找矿论丛6(1):1-13.

[105]

马铁球,陈立新,柏道远,等,2009.湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征[J].中国地质26(1):65-73.

[106]

毛景文,李红艳,徐钰,等,1997.湖南万古地区金矿地质与成因[M].北京:原子能出版社.

[107]

毛景文,周振华,丰成友,等,2012.初论中国三叠纪大规模成矿作用及其动力学背景[J].中国地质39(6):1437-1471.

[108]

任纪舜,牛宝贵,刘志刚,1999.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘6(3):85-93.

[109]

孙立强,2018.南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示[D].南京:南京大学.

[110]

王孝磊,周金城,邱检生,等,2004.湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据[J].地质论评50(1):65-76.

[111]

文志林,邓腾,董国军,等,2016.湘东北万古金矿床控矿构造特征与控矿规律研究[J].大地构造与成矿学40(2):281-294.

[112]

许德如,陈广浩,夏斌,等,2006.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报12(4):507-521.

[113]

许德如,邓腾,董国军,等,2017.湘东北连云山二云母二长花岗岩的年代学和地球化学特征:对岩浆成因和成矿地球动力学背景的启示[J].地学前缘24(2):104-122.

[114]

许德如,王力,李鹏春,等,2009.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报25(5):1056-1078.

[115]

袁梓焜,邵拥军,刘清泉,等,2024.湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J].黄金科学技术32(4):559-578.

[116]

张菲菲,王岳军,范蔚茗,等,2010.湘东—赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J].地球化学39(5):414-426.

[117]

张胜伟,邓腾,许德如,等,2022.万古金矿中碳质物的成因及其与金成矿的关系[J].黄金科学技术30(6):835-847.

[118]

周岳强,董国军,许德如,等,2021.湖南黄金洞金矿床白钨矿Sm-Nd年龄及其地质意义[J].地球化学50(4):381-397.

[119]

周岳强,许德如,董国军,等,2019.湖南长沙—平江断裂带构造演化及其控矿作用[J].东华理工大学学报(自然科学版)42(3):201-208.

基金资助

国家自然科学基金重点项目“江南古陆金(多金属)大规模成矿的机理研究”(41930428)

AI Summary AI Mindmap
PDF (9779KB)

384

访问

0

被引

详细

导航
相关文章

AI思维导图

/