The particle size of minerals is a critical parameter influencing flotation recovery.An optimal particle size range can significantly enhance flotation recovery,whereas excessively coarse or fine particles tend to diminish recovery rates.In conventional mechanical agitation flotation cells,mineralization predominantly occurs in the vicinity of the impeller.Consequently,the rotational speed of the impeller dictates the turbulence dissipation rate within the tank and the size of the bubbles produced.The simultaneous recovery of both fine and coarse particles poses a significant challenge for mechanical agitation flotation machines.The aerated jet flotation cell,which incorporates an air micro-pore foamer and a small-diameter nozzle,represents an advancement over the conventional Jameson flotation cell,offering improved equilibrium in the flotation recovery of coarse and fine mineral particles.To examine the enhancement effect of the aerated jet flotation cell on the flotation process of finely disseminated lead sulfide,a specific lead sulfide ore was selected as the focus of this study.The primary operational parameters,including aeration flow,pulp flow,and bottom pulp flow,were systematically analyzed to assess their influence on the flotation index.Results from flotation tests on a specific lead sulfide ore demonstrate that,in comparison to conventional mechanical agitation flotation cells,the aerated jet flotation cell enhances the overall lead recovery in the concentrate.Additionally,it increases the recovery rates of coarse particles (+0.074 mm) and fine particles (-0.025 mm) by 12.47% and 11.39%,respectively.Utilizing fluid dynamics software,the study examined the impact of varying parameters on the probabilities of collision,adhesion,and detachment between particles and bubbles.The findings indicated that an increase in particle size,pulp flow,and aeration flow corresponded with heightened probabilities of collision and detachment.Conversely,the probability of adhesion diminished with an increase in particle size.Specifically,for particles with a diameter of 0.025 mm,the probability of adhesion decreased as both pulp flow and aeration flow were augmented.The simulation analysis demonstrates that the results align with the experimental findings.The aerated jet flotation cell markedly diminishes turbulence kinetic energy within the tank by reducing bubble size and enhancing the turbulence dissipation rate in the mineralized pipe and nozzle regions.This process establishes distinct zones within the tank:A strong turbulence zone,a transition zone,and a weak turbulence enrichment-separation zone.Consequently,the flotation recovery rate of both coarse and fine lead minerals is significantly enhanced.
大量研究表明,各类矿物的浮选过程均存在一个适宜的入选粒度区间,过细或过粗的矿物粒度均会导致浮选回收率显著降低(罗仙平等,2018;张怡晴等,2023)。具体来说,细颗粒尺寸小、表面能高,与气泡的碰撞概率较低,而粗颗粒则因质量大、惯性高,容易从气泡表面脱附(Yoon et al.,1989;George et al.,2004;李美等,2022;彭科淇等,2023;肖遥等,2024)。针对细粒浮选,提高回收率的方法主要有:通过增大细粒矿物的表观粒径,提高其与气泡的有效碰撞概率;降低精矿中脉石矿物的机械夹带,提升精矿品位;减小气泡尺寸并提高矿浆湍流耗散率,增强细粒矿物与气泡的碰撞概率(赵昱东,2010)。针对粗粒浮选,提高回收率的主要方法是增加捕收剂用量或选用捕收能力更强的捕收剂,以降低粗颗粒的脱附概率(罗亨通等,2022)。此外,还可以通过优化浮选设备,如增加上升水流在槽体内形成流态化床层以稳定粗颗粒,降低槽体高度以缩短矿物浮升时间,以及减少槽内湍流动能等方式降低粗颗粒脱附风险(Safari et al.,2022)。
在传统机械搅拌式浮选机中,矿化过程主要发生在叶轮附近,叶轮转速直接影响槽体内湍流耗散率和气泡直径。这种结构设计存在一定的局限性,导致机械搅拌式浮选机难以实现细粒和粗粒矿物的同步回收(药靖晖,2018)。Jameson浮选机作为一种高效的细粒浮选设备,具有较高的细粒回收能力,但传统的Jameson浮选机矿化管出口较大,当通过提高矿化管射流速度以强化细粒回收时,槽体内湍流耗散率也随之增加,导致粗颗粒的脱附概率升高(Tasdemir et al.,2011;Zhu et al.,2018)。为改善这一问题, Li et al.(2017,2020)基于Jameson浮选机开展了充气射流浮选机的研究。在研究过程中,采用外部充气的微孔管发泡器替代Jameson浮选机的文丘里管发泡器,进一步减小气泡尺寸并提高矿浆湍流耗散率。同时,在下冲管底部增设带喷孔的喷头,减小矿化管流域与槽体流域的接触面积,从而降低矿化管内强湍流对槽体内流场的影响。外部充气的微孔管发泡器和底部喷头的组合使用,有望在减小气泡尺寸的同时,降低槽体内的湍流耗散率,避免粗颗粒沉槽。
式中:Pc为碰撞概率;dp为颗粒直径(mm);db为气泡直径(mm);Reb为气泡雷诺数;Pa为黏附概率;Ub为气泡速度(m/s);tind为响应时间(s);Pd为脱附概率;As为常数取0.5;Bo为脱附力与黏附力的比值。Reb、Ub、tind和Bo采用以下公式(Sutherland,1948;Yoon et al.,1989;Schulze,1993)计算:
图8所示为不同槽体高度径向截面面积平均雷诺数的分布。根据雷诺数大小初步认为Y=110 mm截面以下区域为强湍流区,Y=110 mm 截面至Y=150 mm 截面之间流域为过渡区,Y=150 mm 截面以上区域为分离富集区。强湍流区、过渡区和富集分离区的高度分别为150 mm、40 mm和250 mm。过渡区所占高度比例仅为9.1%,说明充气射流浮选机在强湍流区能够有效强化细粒碰撞和黏附,而富集分离区低雷诺数能够有效减小粗颗粒的脱附。
GeorgeP, NguyenA V, JamesonG J,2004.Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles[J].Minerals Engineering,17(7):847-853.
[2]
HuYuehua,2014.Mineral Flotation[M].Changsha:Central South University Press.
[3]
HuangGen, XuHongxiang, ZhangShuguang,2016.Pyrite tailings flotation based on collaboration of flotation machine and flotation column [J].Journal of Mining Science and Technology,1(1):89-95.
[4]
KohP T L, ManickamM, SchwarzM P,2000.CFD simulation of bubble-particle collisions in mineral flotation cells[J].Minerals Engineering,13(14):1455-1463.
[5]
KohP T L, SchwarzM P,2006.CFD modelling of bubble-particle attachments in flotation cells[J].Minerals Engineering,19(6):619-626.
[6]
LiMei, JiangHao, LiuZhilong,et al,2022.Research progress of dynamic interaction process between flotation particles and bubbles[J]. The Chinese Journal of Nonferrous Metals,32(6):1796-1809.
[7]
LiS, LuD, ChenX,et al,2017.Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area[J].Powder Technology,320:358-361.
[8]
LiS, WangY, LuD,et al,2020.Improving separation efficiency of galena flotation using the aerated jet flotation cell[J].Physicochemical Problems of Mineral Processing,56(3):513-527.
[9]
LuoHengtong, FengDongxia, YangDuo,et al,2022.Coarse particle flotation technology and its application[J].Conservation and Utilization of Mineral Resources,42(1):129-137.
[10]
LuoXianping, WangJinqing, CaoZhiming,et al,2018.Flotation separation of lead-zinc sulfide ore with different flotaion particle size and concentration[J].Chinese Journal of Rare Metals,42(3):307-314.
[11]
PengJian, SunWei, ShenZhengchang,et al,2024.Numerical simulation of flow field in a new three-stage coarse particle flotation column[J]. The Chinese Journal of Nonferrous Metals,34(8):2801-2818.
[12]
PengKeqi, ZhouRuixian,2023.Producion practice of JRF micro-bubble flotation on carlin types gold ore in Guizhou[J].Gold Science and Technology,31(4):689-697.
[13]
SafariM, HoseinianF S, DeglonD,et al,2022.Impact of flotation operational parameters on the optimization of fine and coarse Itabirite iron ore beneficiation[J].Powder Technology,408:117772.
[14]
SchulzeH J,1993.Flotation as heterocoagulation process:Possibilities of calculating the probability of flotation[G]//Dobias B.Coagulation and Flocculation.New York:Dekker.
[15]
SutherlandK L,1948.Physical chemistry of flotation.Ⅺ kinetics of the flotation process[J].The Journal of Physical and Colloid Chemistry,52(2):394-425.
[16]
TasdemirT, TasdemirA, OteyakaB,2011.Gas entrainment rate and flow characterization in downcomer of a Jameson cell[J].Physicochemical Problems of Mineral Processing,47:61-78.
[17]
XiaoYao, HanHaisheng, SunWei,et al,2024.Research progress and trend of fine particle flotation technology and equipment[J].Journal of Central South University(Science and Technology),55(1):20-31.
[18]
YangChanyimin, HeQi, ZhangYiqing,et al,2022.Recent progress and prospects of bubble-particle detachemnt in flotation [J].Metal Mine,51(10):63-70.
[19]
YaoJinghui,2018.Research on Concentration of Steam Coal Using Coarse Particle Flotation[D].Taiyuan:Taiyuan University of Technology.
[20]
YoonR H,2000.The role of hydrodynamic and surface forces in bubble-particle interaction[J].International Journal of Mineral Processing,58(1):129-143.
[21]
YoonR H, LuttrellG H,1989.The effect of bubble size on fine particle flotation[J].Mineral Processing and Extractive Metallurgy Review,5(1/2/3/4):101-122.
[22]
ZhangYiqing, HeQi, YangChenyimin,et al,2023.Research progress and prospect of strengthening coarse particle flotation process [J].Metal Mine,52(2):67-76.
[23]
ZhaoYudong,2010.New progress of flotation equipments [J].Mining and Processing Equipment,38(16):1-5.
[24]
ZhuH, Lopez ValdiviesoA, ZhuJ,et al,2018.A study of bubble size evolution in Jameson flotation cell[J].Chemical Engineering Research & Design,137:461-466.