广东河台金矿Cu-Zn互化物和自然镍的发现及其地质意义

阮班朗 ,  焦骞骞 ,  朱平平 ,  吕恒 ,  田乐源 ,  戴家润 ,  张露

黄金科学技术 ›› 2025, Vol. 33 ›› Issue (01) : 55 -65.

PDF (5826KB)
黄金科学技术 ›› 2025, Vol. 33 ›› Issue (01) : 55 -65. DOI: 10.11872/j.issn.1005-2518.2025.01.269
矿产勘查与资源评价

广东河台金矿Cu-Zn互化物和自然镍的发现及其地质意义

作者信息 +

Discovery of Cu-Zn Intermetallic Compounds and Native Ni in the Hetai Gold Deposit,Guangdong Province and Its Geological Significance

Author information +
文章历史 +
PDF (5965K)

摘要

河台金矿是目前广东省发现的规模最大的金矿床。由于金矿体均产于剪切带中,因此被认为是典型的剪切带型金矿。基于光学显微镜和扫描电镜(SEM)矿相学观察,利用电子探针(EPMA)对矿物的化学成分进行分析,在河台金矿发现了Cu-Zn互化物和自然镍。Cu-Zn互化物中主要含有Cu和Zn,以及少量的Fe、Au和Pb,其中,Cu含量为58.63%~62.14%(平均值为60.41%),Zn含量为35.55%~38.48%(平均值为36.63%),计算得到的分子式为Cu0.61Zn0.37Fe0.02,近似为Cu2Zn。自然镍矿物中主要含有Ni和Fe,还有少量S、Cu和Te,其中,Ni含量为86.33%~87.74%(平均值为87.26%),Fe含量为4.56%~5.02%(平均值为4.72%),计算得到的分子式为Ni0.93Fe0.05S0.02,为含铁自然镍。河台金矿Cu-Zn互化物和自然镍形成于热液成矿期第一个阶段(石英—硫化物阶段)局部缺硫缺氧的高温环境,其形成可能与深部地幔流体有关。结合前人He-Ar同位素测定结果,进一步证实可能有少量地幔流体参与成矿。

Abstract

The Hetai goldfield,situated in Guangdong Province represents the largest gold mining district in South China.The confinement of the Au orebodies to mylonite zones has led to the classification of this goldfield as a prototypical example of gold mineralization associated with ductile-shear deformation.Comprehensive mineralogical analyses were performed on ore thin sections utilizing optical microscopy and scanning electron microscopy(SEM),followed by electron probe microanalysis(EPMA) to determine the mineral geochemistry.In the Hetai goldfield,a significant discovery was made,identifying the presence of Cu-Zn intermetallic compounds and native Ni minerals.The Cu-Zn intermetallics exhibit a copper mass fraction ranging from 58.63% to 62.14%,with an average of 60.41%,and a zinc mass fraction ranging from 35.55% to 38.48%,with an average of 36.63%.Additionally,trace amounts of Fe,Au,and Pb were detected in the Cu-Zn intermetallic compounds.The calculated molecular formula is Cu0.61Zn0.37Fe0.02,which is approximately Cu2Zn.The native nickel(Ni) minerals exhibit a Ni mass fraction ranging from 86.33% to 87.74%,with an average of 87.26%,and an iron(Fe) content ranging from 4.56% to 5.02%,with an average of 4.72%.Additionally,these minerals contain trace amounts of sulfur(S),copper(Cu),and tellurium(Te).The derived molecular formula,Ni0.93Fe0.05S0.02,suggests the presence of iron-bearing native nickel.The genesis of copper-zinc(Cu-Zn) intermetallic compounds and native nickel within the Hetai goldfield is likely associated with deep mantle fluids and is postulated to have occurred during the initial phase of hydrothermal mineralization.This phenomenon specifically,transpired within a high-temperature environment characterized by localized deficiencies in sulfur and oxygen during the quartz-sulfide stage.These findings corroborate prior results obtained from He-Ar isotope analyses,thereby affirming the participation of a minor proportion of mantle-derived fluid in the process of gold mineralization.

Graphical abstract

关键词

河台金矿 / Cu-Zn互化物 / 自然镍 / 地幔流体 / 韧性剪切带 / He-Ar同位素

Key words

Hetai gold deposit / Cu-Zn intermetallics / native Ni / mantle fluid / ductile-shear deformation / He-Ar isotopes

引用本文

引用格式 ▾
阮班朗,焦骞骞,朱平平,吕恒,田乐源,戴家润,张露. 广东河台金矿Cu-Zn互化物和自然镍的发现及其地质意义[J]. 黄金科学技术, 2025, 33(01): 55-65 DOI:10.11872/j.issn.1005-2518.2025.01.269

登录浏览全文

4963

注册一个新账户 忘记密码

金属互化物是由2种或多种金属原子按照一定比例配合形成的具有特殊性质的化合物,其主要特点是化学式成分固定、结构晶化程度高且固溶解度低。自从Fe-Ni和Fe-Ni-Co互化物矿物被发现以来,越来越多的铁族、铂族和硫化矿床成矿元素族所形成的自然金属单质矿物和互化物,已被证实存在于自然界中。Makeev et al.(1984)研究表明,仅在乌拉尔地区蛇绿岩(阿尔卑斯型岩体)中就存在200多种自然金属元素及其互化物。在我国,研究人员发现天然锌、铜金属互化物产于不同类型的岩石和矿床中,如:与超基性岩有关的四川丹巴铜镍硫化物矿床(岳树勤等,1982),与碱性岩有关的四川牦牛坪稀土矿(谢玉玲等,2005),四川若尔盖巴西硅化石英岩型金矿(罗梅等,1999),以及甘肃寨上微细浸染型金矿(Liu et al.,2008)。
广东河台金矿是一大型金矿,累计提交金资源储量超过50 t,也是我国两广地区规模最大的金矿。由于金矿体均产于剪切带中,因此被认为是典型的剪切带型金矿。自20世纪80年代该金矿被发现以来,前人对其矿床成因(段嘉瑞等,1992Zhang et al.,2001)、成矿时代(翟伟等,2006王成辉等,2012王历星等,2019)、成矿流体和物质来源(陆建军,1993叶锦华等,1993Jiao et al.,2017a张胜印等,2023)、流体包裹体与成矿物理化学条件(Wang et al.,1997Zheng et al.,2016Jiao et al.,2017bWang et al.,2020王圆元等,2021)以及剪切带变形特征(Jiao et al.,2017b师爽等,2021李康等,2024)等进行了大量研究,以探讨剪切变形与成矿作用之间的关系。此外,前人对河台金矿矿石中金的赋存状态、矿物标型和矿物化学特征也开展了相关研究(周平,1991姚德贤等,1996江明阳等,2007),但是尚未有关于金属互化物的报道。
为进一步查明矿石中的矿物组成,通过光学显微镜和扫描电镜(SEM)观察,并结合电子探针(EPMA)分析技术,在河台金矿发现了Cu-Zn金属互化物和含铁自然镍,通过对自然界中这些特殊且少见矿物的研究,有助于进一步认识剪切带型金矿床的成因和成矿物理化学条件。

1 区域构造背景

广东河台金矿位于粤西的云开地区,该区显生宙以来受加里东期、印支期和燕山期3期构造—热事件影响,总体表现出先挤压后伸展的构造演化特征(Wang et al.,2011)。

云开地区出露地层较为齐全,从元古宇至新生界均有分布。区域构造以NE-NNE向断裂为主,如防城—灵山断裂(F1)、罗定—广宁断裂(F2)和吴川—四会断裂(F3)等近于平行的剪切断裂系统(图1)。这些剪切断裂带与印支期造山作用有关,经历了248~220 Ma时期的左旋剪切变形和220~200 Ma时期的右旋剪切变形(Wang et al.,2007Jiao et al.,2017a)。其中,罗定—广宁断裂(F2)控制着区域上新洲、河台和罗定等金矿田(图1)。区内岩浆活动频繁,岩石类型包括加里东期和印支早期的S型花岗岩和花岗混合岩(邱小平,2004彭松柏等,2006Wan et al.,2010焦骞骞等,2020),以及在区域西南边缘出露的燕山期Ⅰ型花岗岩(Lin et al.,2008)。

2 矿区地质特征

矿区内分布的地层主要为云开群变质岩及上覆弱变质—未变质的奥陶系和白垩系(图2)。其中,云开群变质程度达绿片岩相至角闪岩相,且多发生混合岩化[图3(a)],相关研究表明其原岩为早古生代早期沉积岩,而非前寒武纪基底(Wang et al.,2007周雪瑶等,2015焦骞骞等,2017)。

矿区主要出露2个岩体:西部云楼岗岩体的岩性主要为黑云二长花岗岩和黑云花岗闪长岩,为印支早期岩体,锆石年龄为(253±1.6)Ma(焦骞骞等,2020);东部燕山期伍村岩体的岩性为中—中粗粒斑状—巨斑状黑云母花岗岩或二长花岗岩,形成于燕山期,锆石年龄为(159.3±0.8)Ma(Wang et al.,2020)。

矿区内若干条韧性剪切带总体走向为52°~72°,倾向NW,倾角较陡(60°~80°),为云开群混合岩局部遭受剪切形成[图3(b)]。金矿床产于剪切带中,如9号糜棱岩带(ML9)内的云西金矿床、ML11内的高村金矿床和ML18内的河台金矿床(图2)。

矿体呈脉状,可划分为石英脉型和蚀变糜棱岩型,前者为图3(c)虚线之上,后者为图3(c)虚线之下。矿体与糜棱岩产状一致,倾向NW,倾角较陡,为60°~85°。含金石英脉型矿石为块状构造,硫化物以脉状或胶结物的形式产出[图3(d)]。蚀变糜棱岩型矿石为条带状构造,硫化物以细脉状或浸染状产出,且大多平行于糜棱面理[图3(e)、3(f)]。矿体的围岩蚀变主要有硅化、绢云母化、黄铁矿化、绿泥石化和碳酸盐化。其中,硅化和黄铁矿化是重要的找矿标志。矿石中常见的矿石矿物有自然金、黄铜矿、磁黄铁矿、黄铁矿和毒砂,脉石矿物有石英、长石、绿泥石、绢云母和方解石。

根据矿物之间的交切关系,并结合前人研究成果,成矿过程可划分为3个成矿期,其中热液成矿期又可进一步细分为3个阶段(图4)。

金—硫化物阶段可见自然金[(图3(g)、3(h)]与黄铜矿、黄铁矿等密切共生。另外,Cu-Zn互化物[图3(i)、3(j)]和含铁自然镍矿物[图3(k)、3(l)]被硫化物包围,因此可能形成于石英—硫化物阶段。

3 样品采集及分析

本次试验所需样品采自河台金矿田高村矿床-140 m中段的石英脉型矿石中。将所采集的样品光薄片在光学显微镜下进行岩矿相学观察,选择具有代表性的光薄片在扫描电镜(SEM)下进行研究,再利用电子探针显微分析仪(EPMA)进行矿物成分的原位分析。相关试验在中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室完成。

试验前需将试验所需薄片进行喷碳处理,试验所用仪器为日本电子JEOL公司生产的JXA-8230型电子探针。试验条件如下:束斑为2 μm,加速电压为15 kV,束流为2.0×10-8。分析标样包括硅锌矿(Zn)、黄铜矿(Cu)和镍黄铁矿(Ni)。采用ZAF修正法对分析数据进行处理。

4 分析结果

河台金矿矿石中Cu-Zn互化物颗粒粒径为20 μm×40 μm,在反射光下为灰色[图3(i)],在背散射电子(BSE)图像上则为亮白色[图3(j)],与自然金相似[图3(h)]。相比之下,含铁自然镍矿物的粒径更小,为3 μm×8 μm,在反射光下为灰黑色[图3(k)],而在BSE图像上为灰白色[图3(l)]。2种矿物的电子探针分析结果见表1

其中,Cu-Zn互化物中Cu的质量分数为58.63%~62.14%,平均值为60.80%;Zn质量分数为35.55%~38.48%,平均值为36.61 %;Fe质量分数为0.07%~2.60%,平均值为1.39%。除此之外,Cu-Zn互化物中还含有少量的Au和Pb。根据分析结果计算得到该Cu-Zn互化物分子式为Cu0.61Zn0.37Fe0.02,近似为Cu2Zn,在Cu-Zn合金相图上属于α相(图5)。含铁自然镍矿物中Ni含量为86.33%~87.74%,平均值为87.30%;Fe含量为4.47%~5.02%,平均值为4.70%;S含量为0.89%~0.99%,平均值为0.94%。另外,还含有少量的Cu和Te。计算得到的分子式为Ni0.93Fe0.05S0.02

5 讨论

天然铜锌合金矿物在自然界并不多见。Cu-Zn互化物最初是在月岩(Apollo-11)样品中发现的(Agrell et al.,1970),随后又陆续有关于陨石和多种地质体中存在有不同类型天然铜锌合金矿物的报道。国外关于Cu-Zn互化物的详细研究较少(Distlera et al.,2004),但国内已有较多发现和研究。其中,已发现的天然铜锌合金矿物中,除丹巴矿和张衡矿已正式命名外,其他尚无通用的矿物名称(表2),且除了丹巴矿属铜锌合金中的γ相,张衡矿属β相外,其余均属α相。尽管在广东河台金矿中发现的Cu-Zn互化物与前人在玉龙铜矿和若尔盖巴西金矿等地区的岩(矿)石中发现的铜锌合金矿物同属Cu2Zn,但这2种矿物中的Cu和Zn含量存在差异。例如,西藏玉龙铜锌合金矿物中Cu含量为67.3%~69.2%,Zn含量为29.8%~30.4%;马拉松多铜矿中Cu含量为61.8%~62.1%,Zn含量为29.8%~30.4%;巴西金矿中Cu含量为64.86%~65.28%,Zn含量为34.12%~34.22%;盐源西范坪斑岩型铜矿中Cu含量为59.15%~62.55%,Zn含量为36.32%~39.85%;冕宁牦牛坪稀土矿中Cu含量为67.33%~67.37%,Zn含量为30.41%~31.03%(图6)(帅德权等,1998Xiao et al.,1998罗梅等,1999谢玉玲等,2005)。河台金矿发现的Cu2Zn矿物成分与盐源西范坪斑岩型铜矿和西藏马拉松多斑岩型铜矿的特征更为接近(图6)。除了Cu-Zn二元合金矿物之外,前人还发现含锌自然铜,其中Cu含量为81.35%~85.36%,Zn含量为6.08%~10.10%(杨隆勃等,2011)。此外,还发现Cu-Zn多元合金矿物,如甘肃寨上金矿的Ni-Zn-Cu合金矿物中Cu和Zn含量分别为53.49%和35.39%,Ni含量为7.60%,属α+β相(Liu et al.,2008)。

前人发现的自然镍矿物中Ni含量也有一定差异。例如,南非Bultfontein金伯利岩自然镍中Ni含量为84.11%~97.40%(Giuliani et al.,2013),甘肃寨上金矿的自然镍中Ni含量为91.64%(Liu et al.,2008),西藏罗布莎铬铁矿自然镍中Ni含量为97.49%~97.62%(白文吉等,2004),而河北燕山南段钠质花岗岩小岩株自然镍中Ni含量高达99.82%(叶德隆等,1985)。相较而言,在河台金矿发现的自然镍中Ni含量较低,为87.26%。除自然镍之外,自然界中Ni也常形成各种金属互化物,如甘肃寨上金矿Zn-Cu-Ni合金矿物,Ni、Cu和Zn含量分别为22.07%~80.38%、10.30%~60.04%和5.34%~21.23% (Liu et al.,2008)。

铜(Cu)、锌(Zn)、镍(Ni)和铁(Fe)均位于元素周期表的第四周期。根据Goldschmidt的地球化学分类,镍(Ni)和铁(Fe)被归类为亲铁元素,而铜(Cu)和锌(Zn)则属于亲铜元素。铜和锌在周期表中是相邻元素,因此二者在地球化学特性上展现出相似性。例如:铜的相对原子质量为63.54,锌的相对原子质量为65.38;铜的原子半径为0.1278 nm,锌的原子半径为0.1333 nm;铜离子(Cu2+)的半径为0.072 nm,锌离子(Zn2+)的半径为0.074 nm;铜离子的电位为2.78,锌离子的电位为2.70。这些特性表明,铜和锌均具有铜型离子结构,并表现出显著的亲硫性,所以易形成硫化物(黄铜矿和闪锌矿),只有在某些特殊条件下才能形成Cu-Zn化合物。Ni和Fe是较活泼的金属元素,二者均具有较强的亲硫性,这也解释了河台金矿发现的自然镍矿物中含有少量Fe和S的原因。

自然界中,地幔内部之所以有种类繁多的金属互化物存在,很可能是由于地球在形成初期,有大量物质被滞留于地幔和地核之中。目前发现的Cu-Zn-Fe-Ni等单质矿物或金属互化物大多产于板块构造缝合带及其附近,与相应板块俯冲和碰撞所导致的深源基性—超基性岩浆具有直接或间接的联系(肖渊甫等,2012)。岩石圈地幔中自然元素或互化物可能有以下3个来源:(1)橄榄岩部分熔融残留下来的难熔相(Lorand et al.,2010);(2)硫化物的脱硫酸或低温重结晶(Keays et al.,1981);(3)与硅酸盐矿物相互作用下富金属流体的沉淀(Ishimaru et al.,2009)。Giuliani et al.(2013)对南非Bultfontein金伯利岩中岩石圈地幔富镍斜辉橄榄岩捕掳体进行研究,认为其中的Ni单质和互化物来自富含过渡金属阳离子(Ni、Fe、Cu、Co)、碱金属、S、Cl、As和Sb的C-H-O流体。可能是由于硫化物的分解以及流体与难熔地幔岩石的相互作用导致流体中富镍和其他金属阳离子。这些阳离子易与S和Cl形成复杂的配位体(如氯化物和二硫化物),从而得以在富碱C-H-O流体中运移。河台金矿流体包裹体具有低盐度[w(NaCl)均值小于10%]和富CO2的特点(Wang et al.,1997Zheng et al.,2016),且其中的离子相对含量大小为Na+>K+>Ca2+和HCO3->Cl->F->ΣS(Wang et al.,1997),这种环境有利于过渡金属阳离子(Ni、Fe、Cu、Co)在其中的运移。另外,黄铁矿和磁黄铁矿的He-Ar同位素研究表明河台金矿样品中流体主要来自地壳,但有明显的地幔流体的混入(Jiao et al.,2017a)。Cu-Zn互化物和Ni金属单质的发现进一步证明了地幔流体对成矿的贡献。

研究表明,Cu、Fe和Ni等元素需要在高温、较强还原性且局部缺硫或缺氧的环境中形成,或者在不缺乏硫但深源物质快速上升导致自然金属未能及时与S、O等元素结合的情况下形成,进而产生自然金属及其金属互化物。河台金矿发现的Cu-Zn互化物和自然镍被黄铁矿和黄铜矿包围或包裹[图3(i)~3(l)],因此其形成时间相对较早。流体包裹体和矿物温度计研究表明,河台金矿成矿温度为350~170 ℃,且最主要在230~260 ℃(即金—硫化物成矿阶段)(何文武等,1993Zheng et al.,2016Jiao et al.,2017b)。而热液成矿期的第一个阶段——石英—硫化物阶段温度较高, 为290~350 ℃,因此推测Cu-Zn互化物和单质镍矿物形成于该阶段局部缺氧缺硫的环境。

6 结论

(1)河台金矿Cu-Zn互化物为α相的Cu2Zn,但Cu含量较低;单质镍矿物为含铁自然镍。

(2)河台金矿Cu-Zn互化物和自然镍的形成可能与深部地幔流体有关,形成于热液成矿期的第一个阶段,即石英—硫化物阶段高温局部缺硫缺氧的环境。

参考文献

[1]

Agrell S OScoon J HMuir I D,et al,1970.Mineralogy and petrology of some lunar samples[J].Science167(3918):583-586.

[2]

Bai WenjiYang JingsuiFang Qingsong,et al,2004.Chemical compositions of alloys from podiform chromitites in the Luobusa ophiolite,Tibet[J].Acta Geological Sinica78(10):676-684.

[3]

Chen JunWang Henian1993.Characteristics of REE and other trace elements within a shear zone of the Hetai gold deposit,Guangdong Province[J].Mineral Deposits12(3):202-211.

[4]

Distlera V VYudovskaya M AGennady L2004.Geology,composition and genesis of the Sukhoi Log noble metals deposit,Russia[J].Ore Geology Reviews24(1/2):7-44.

[5]

Duan JiaruiHe ShaoxunZhou Chongzhi,et al,1992.On the structural characteristics of Hetai gold deposit Guangdong and the gold deposit model of shear zone type[J].Journal of Central South University(Science and Technology)23(3):245-253.

[6]

Giuliani AKamenetsky V SKendrick M A,et al,2013.Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S-Cl-rich C-O-H fluids[J].Contribution to Mineralogy and Petrology,165:155-171.

[7]

He WenwuZhang Wenhuai1993.Physical-chemical conditions for the ore-forming process of the Hetai gold deposit in Guangdong Province and ore-prospecting directions[J].Mineral Deposits12(2):120-128.

[8]

Ishimaru SArai SShukuno H2009.Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano,Kamchatka[J].Earth and Planetary Science Letters284(3/4):352-360.

[9]

Jiang MingyangGong Chaoyang2007.The typomorphie characteristics of minerals in Hetai gold deposit and its relationship with gold mineralization[J].Gold Science and Technology15(3):34-37.

[10]

Jiao Q QDeng TWang L X,et al,2017b.Geochronological and mineralogical constraints on mineralization of the Hetai goldfield in Guangdong Province,South China[J].Ore Geology Reviews,88:655-673.

[11]

Jiao Q QWang L XDeng T,et al,2017a.Origin of the ore-forming fluids and metals of the Hetai goldfield in Guangdong Province of South China:Constraints from C-H-O-S-Pb-He-Ar isotopes[J].Ore Geology Reviews,88:674-689.

[12]

Jiao QianqianHe ChangkunDong Youpu,et al,2020.The petrogennetic links of Indosinian granitoid and migmatite in the Hetai goldfield,Guangdong Province of South China and tectonic implication[J].Acta Petrologica Sinica36(3):893-912.

[13]

Jiao QianqianXu DeruChen Genwen,et al,2017.Zircon LA-ICP-MS U-Pb age of mylonite in the Hetai goldfield,Guangdong Province of South China and the geological implication[J].Acta Petrologica Sinica33(6):1755-1774.

[14]

Keays R RSewell D K BMitchell R H1981.Platinum and palladium minerals in upper mantle-derived lherzolites[J].Nature,294:646-648.

[15]

Li BenhaiXue Xiudi1984.First discovery of some metallic minerals in Kacoppernickel deposit,Northern Xinjiang[J]. Xinjiang Geology2(2):64-74,102-105.

[16]

Li KangJiao QianqianXu Deru,et al,2024.Characteristics of mylonite magnetic fabrics and constraint on the relationship between the shear zone deformation and mineralization[J].Acta Geologica Sinica98(6):1757-1775.

[17]

Lin WWang Q CChen K2008.Phanerozoic tectonics of South China block:New insights from the polyphase deformation in the Yunkai massif[J].Tectonics27(6):1-16.

[18]

Liu Y SHu Z CGao S,et al,2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,257:34-43.

[19]

Lorand J PAlard OLuguet A2010.Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite(northeastern Pyrenees,France)[J].Earth and Planetary Science Letters,289:298-310.

[20]

Lu Jianjun1993.Definition of gold-bearing source strata and its significance for gold mineralization[J].Journal of Nanjing University(Natural Sciences Edition)29(1):115-124.

[21]

Luo MeiWang Yuewen1999.The discovery of copper-zinc(Cu2Zn) ores of Baxi gold deposit in Roergai and its geologic significance[J].Acta Mineralogica Sinica19(1):20-22.

[22]

Makeev A BAgafonov L VGoncharenko A I1984.The relation of the chemical composition to the physical properties of chrome spinels in alpinotypic ultrabasites[J].Soviet Geology and Geophys25(2):125-129.

[23]

Peng SongbaiJin ZhenminLiu Yunhua,et al,2006.Petrochemistry,chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic belt,western Guangdong Province,China[J].Earth Science31(1):110-120.

[24]

Qiu Xiaoping2004.Relationship between gold mineralization and opening-closing cycle transition in the Yunkaidashan area,South China[J].Geological Bulletin of China23(3):272-278.

[25]

Qiu YuanxiLiang Xinquan2006.Evolution of basin-range coupling in the Yunkai Dashan-Shiwan Dashan area,Guangdong and Guangxi:With a discussion of several tectonic problems of South China[J].Geological Bulletin of China25(3):340-347.

[26]

Shi ShuangJiao QianqianGong Chaoyang,et al,2021.The XRD characteristics of mylonite in the Hetai gold orefield,western Guangdong,and its geological implication[J].Geological Review67(6):1751-1762.

[27]

Dequan ShuaiZhang RuboLuo Mei,et al,1998.The study of natural Cu-Zn series mineral-tongxinite[J].Acta Mineralogica Sinica18(4):509-512.

[28]

Wan Y SLiu D YWilde S,et al,2010.Evolution of the Yunkai Terrane,South China:Evidence from SHRIMP zircon U- Pb dating,geochemistry and Nd isotope[J].Journal of Asian Earth Sciences,37:140-153.

[29]

Wang ChenghuiZhang ChangqingWang Yonglei,et al,2012.Chronological research of the Hetai gold mine in Gaoyao County,Guangdong Province[J].Geotectonica et Metallogenia36(3):427-433.

[30]

Wang H NChen JJi J F,et al,1997.Geological and geochemical characteristics of the Hetai gold deposit,South China:Gold mineralization in an auriferous shear zone[J].International Geology Review,39:181-190.

[31]

Wang KuirenWang JunxinLi Xueming1986.Investigation and mineralogical study of the meteorite in Bo County,Anhui Province[J].Science Bulletin,10:756-759.

[32]

Wang L XZhao C XHuang Q Y,et al,2020.The genesis of gold deposits in the Hetai goldfield,South China:New constraints from geochronology,fluid inclusion,and multiple isotopic studies[J].Geological Journal,55:2447-2472.

[33]

Wang LixingXu KeXu Deru,et al,2019.Geochronology,magnetic fabric of rocks and its relationship with ore mineralization in Hetai goldfield,Guangdong Province[J].Geotectonica et Metallogenia43(6):1169-1185.

[34]

Wang Y JFan W MZhao G C,et al,2007.Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J].Gondwana Research12(4):404-416.

[35]

Wang Y JZhang A MFan W M,et al,2011.Kwangsian crustal anatexis within the eastern South China Block:Geochemical,zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J].Lithos127(1/2):239-260.

[36]

Wang YuanyuanNi PeiPan Junyi,et al,2021.The two metallogenic events of the Hetai gold deposit in Guangdong Province:Evidences from the cathodoluminescence imaging and fluid inclusion studies[J].Bulletin of Mineralogy,Petrology and Geochemistry40(6):1330-1344.

[37]

Xiao Y FSun YLu Y,et al,1998.Zinccopperite—A new variety of zinc-copper intermetallic compounds discovered in a porphyry-copper deposit[J].Acta Geologica Sinica72(3):308-313.

[38]

Xiao YuanfuSun YanWang Qiang,et al,2012.The discovery of rare intermetallic compounds(Ni-Cr-Fe,Cu-Zn) in the Gaerqiong copper-gold deposit of Tibet[J].Geology in China39(5):1311-1317.

[39]

Xie YulingHou ZengqianXu Jiuhua,et al,2005.The discovery and genesis of zinc copperite and copper-tin in Mianning-Dechang REE metallogenic belt,Sichuan[J].Science in China(Series D)35(6):572-577.

[40]

Yang LongboLiu JiajunZhu Yiguang,et al,2011.Discovery of Cu-Zn intermetallic compound in the Jinshan gold deposit and its geological significance[J].Acta Geologica Sinica31(1):1-8.

[41]

Yao DexianSun XiaomingYang Rongyong1996.Study on gold occurrence state of Hetai gold deposit[J].Southern Metals,(2):18-21.

[42]

Ye DelongXu Jifeng1985.Discover of natural nickel from granite in China and its significance[J].Earth Science10(4):115-118,192.

[43]

Ye JinhuaQiu Xiaoping1993.Geology and geochemistry study and metallogenic modexl research of Hetai gold,Guangdong Province[J].Journal of Precious Metallic Geology2(4):306-315.

[44]

Yue ShuqinWang WenyingLiu Jinding,et al,1982.Research on Danbaite[J].Chinese Science Bulletin27(22):1382-1386.

[45]

Zhai WeiLi ZhaolinSun Xiaoming,et al,2006.SHRIMP zircon U-Pb dating of the Hetai gold deposit in western Guangdong,China and geological implications[J].Geological Review52(5):691-699.

[46]

Zhang G LClive A BLiang J C2001.Brittle origins for disseminated gold mineralization in mylonite:Gaocun gold deposit,Hetai goldfield,Guangdong Province,South China[J].Economic Geology96(1):49-59.

[47]

Zhang ShengyinJiao QianqianXu Deru,et al,2023.Geochemical characteristics and geological significances of calcite in the Hetai gold deposit,Guangdong Province,China[J].Acta Mineralogica Sinica43(2):225-239.

[48]

Zheng YZhou Y ZWang Y J,et al,2016.A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay-Hangzhou Bay metallogenic belt,South China[J].Ore Geology Reviews,73:346-353.

[49]

Zhou Ping1991.Prospecting mineralogical study of pyrite in Hetai gold ores,Guangdong[J].Mineral Resources and Geology5(6):453-458.

[50]

Zhou XueyaoYu JinhaiWang Lijuan,et al,2015.Compositions and formation of the basement metamorphic rocks in Yunkai terrane,western Guangdong Province,South China[J].Acta Petrologica Sinica31(3):855-882.

[51]

白文吉,杨经绥,方青松,等,2004.西藏罗布莎蛇绿岩豆荚状铬铁矿石中的合金成分[J].地质学报78(10):676-684.

[52]

陈骏,王鹤年,1993.广东省河台含金剪切带中REE及其它微量元素的含量和分布特征[J].矿床地质12(3):202-211.

[53]

段嘉瑞,何绍勋,周崇智,等,1992.广东河台金矿构造特征及剪切带型金矿模式探讨[J].中南大学学报(自然科学版)23(3):245-253.

[54]

何文武,张文淮,1993.广东河台金矿成矿物理—化学条件及找矿方向[J].矿床地质12(2):120-128.

[55]

江明阳,龚朝阳,2007.河台金矿床标型矿物与金矿化的关系[J].黄金科学技术15(3):34-37.

[56]

焦骞骞,贺昌坤,董有浦,等,2020.广东河台金矿区印支期花岗岩与混合岩成因联系及大地构造意义[J].岩石学报36(3):893-912.

[57]

焦骞骞,许德如,陈根文,等,2017.广东省河台金矿区糜棱岩锆石 LA-ICP-MS U-Pb年龄及其地质意义[J].岩石学报33(6):1755-1774.

[58]

李本海,薛秀娣,1984.新疆北部喀铜镍矿中首次发现的几种金属矿物[J].新疆地质2(2):64-74,102-105.

[59]

李康,焦骞骞,许德如,等,2024.广东河台金矿田糜棱岩磁组构对剪切带变形与成矿的约束[J].地质学报98(6):1757-1775.

[60]

陆建军,1993.粤西含金矿源层的确定及成矿意义[J].南京大学学报(自然科学版)29(1):115-124.

[61]

罗梅,王月文,1999.若尔盖巴西金矿床铜锌矿的发现及其地质意义[J].矿物学报19(1):20-22.

[62]

彭松柏,金振民,刘云华,等,2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J].地球科学31(1):110-120.

[63]

邱小平,2004.两广云开大山地区开合旋回转换与金成矿作用的关系[J].地质通报23(3):272-278.

[64]

丘元禧,梁新权,2006.两广云开大山—十万大山地区盆山耦合构造演化——兼论华南若干区域构造问题[J].地质通报25(3):340-347.

[65]

师爽,焦骞骞,龚朝阳,等,2021.粤西河台金矿田糜棱岩XRD特征及其地质意义[J].地质论评67(6):1751-1762.

[66]

帅德权,张如柏,罗梅,等,1998.天然铜锌系列中铜锌矿物(Cu2Zn)的研究[J].矿物学报18(4):509-512.

[67]

王成辉,张长青,王永磊,等,2012.广东高要河台金矿同位素年代学研究[J].大地构造与成矿学36(3):427-433.

[68]

王奎仁,王俊新,李学明,1986.安徽亳县陨石考察及矿物研究[J].科学通报,10:756-759.

[69]

王历星,许可,许德如,等,2019.广东河台金矿围岩磁组构特征、年代学及与金矿化关系[J].大地构造与成矿学43(6):1169-1185.

[70]

王圆元,倪培,潘君屹,等,2021.广东河台金矿两阶段成矿事件:来自含金石英脉阴极发光和流体包裹体研究[J].矿物岩石地球化学通报40(6):1330-1344.

[71]

肖渊甫,孙燕,王强,等,2012.西藏尕尔穷铜金矿床发现罕见金属(Ni-Cr-Fe,Cu-Zn)互化物[J].中国地质39(5):1311-1317.

[72]

谢玉玲,侯增谦,徐九华,等,2005.四川冕宁—德昌稀土成矿带铜锌、铜锡合金矿物的发现及成因意义[J].中国科学(D 辑)35(6):572-577.

[73]

杨隆勃,刘家军,朱亿广,等,2011.新疆金山金矿床中 Cu-Zn-合金矿物的发现及其地质意义[J].矿物学报31(1):1-8.

[74]

姚德贤,孙晓明,杨荣勇,1996.河台金矿床金赋存状态研究[J].南方钢铁,(2):18-21.

[75]

叶德隆,许继锋,1985.我国花岗岩中自然镍的发现及其意义[J].地球科学10(4):115-118,192.

[76]

叶锦华,邱小平,1993.河台金矿矿床地球化学研究及矿田成矿模式探讨[J].贵金属地质2(4):306-315.

[77]

岳树勤,王文瑛,刘金定,等,1982.丹巴矿的研究[J].科学通报27(22):1382-1386.

[78]

翟伟,李兆麟,孙晓明,等,2006.粤西河台金矿锆石SHRIMP年龄及其地质意义[J].地质评论52(5):691-699.

[79]

张胜印,焦骞骞,许德如,等,2023.广东河台金矿方解石地球化学特征与地质意义[J].矿物学报43(2):225-239.

[80]

周平,1991.广东河台金矿黄铁矿找矿矿物学研究[J].矿产与地质5(6):453-458.

[81]

周雪瑶,于津海,王丽娟,等,2015.粤西云开地区基底变质岩的组成和形成[J].岩石学报31(3):855-882.

基金资助

国家自然科学基金重点项目“大洋岩石圈板块的异质性如何制约斑岩型铜矿时空聚集分布”(42430111)

云南省青年人才项目“兴滇英才支持计划,机器学习地质温度压力计:定量限定多阶段地质过程”(KKRD202221051)

云南省高层次科技人才及创新团队选拔专项—顶尖团队项目“Re-PGE等关键金属形成机理课题”(202305AT350004)

国家自然科学基金项目“广东河台金矿剪切带变形条件的差异性成矿作用研究”(41902086)

AI Summary AI Mindmap
PDF (5826KB)

208

访问

0

被引

详细

导航
相关文章

AI思维导图

/