胶东土堆—沙旺金矿床成矿物质来源及含矿二长花岗岩年代学研究

方耀珩 ,  杨群 ,  彭晓蕾 ,  王斌 ,  李婵 ,  李昊喆 ,  陈思彤

黄金科学技术 ›› 2025, Vol. 33 ›› Issue (03) : 467 -481.

PDF (7882KB)
黄金科学技术 ›› 2025, Vol. 33 ›› Issue (03) : 467 -481. DOI: 10.11872/j.issn.1005-2518.2025.03.359
矿产勘查与资源评价

胶东土堆—沙旺金矿床成矿物质来源及含矿二长花岗岩年代学研究

作者信息 +

Source of Ore-forming Materials and Chronology of Ore-bearing Monzo-granite in the Tudui-Shawang Gold Deposit,Shandong Province

Author information +
文章历史 +
PDF (8070K)

摘要

胶东土堆—沙旺金矿床位于胶莱盆地东北缘,是牟平—乳山成矿带西侧新探明的金矿床。为探明矿床成矿物质来源并明确矿化时间,选择主成矿阶段载金黄铁矿和闪锌矿样品开展S、Pb同位素测试,对成矿期二长花岗岩开展Pb同位素测试和LA-ICP-MS锆石U-Pb测年研究。黄铁矿和闪锌矿的δ34S值变化范围分别为-1.6‰~2.2‰和-1.5‰~0.7‰,成矿物质主要来源于岩浆。硫化物Pb同位素206Pb/204Pb、207Pb/204Pb与208Pb/204Pb测试结果分别为18.147~18.347、15.496~15.589和38.247~38.423。二长花岗岩Pb同位素206Pb/204Pb、207Pb/204Pb和208Pb/204Pb测试结果分别为18.244~18.350、15.486~15.557和38.259~38.363,硫化物和二长花岗岩具有相似的Pb同位素特征,表明土堆—沙旺金矿床的成矿物质主要来源于二长花岗岩,且壳—幔混源特征显著。与金矿化密切相关的二长花岗岩LA-ICP-MS同位素测年结果为(116±2)Ma(N=17,MSWD=2.4),该年龄与区域上大规模金矿化事件的时间基本一致,表明金矿化时代为早白垩世晚期。结合区域构造演化历史,认为在早白垩世晚期,太平洋板块向欧亚大陆板块俯冲,致使华北克拉通发生岩石圈拆沉减薄和大规模地幔上涌,引起壳—幔物质交换,形成二长花岗质岩浆,分异出的含矿热液沿NE向构造断裂向上运移至浅部形成土堆—沙旺金矿床。

Abstract

The Tudui-Shawang gold deposit is situated on the northeastern margin of the Jiao-Lai Basin,and on the western side of the Muping-Rushan gold mineralization belt.To ascertain the source of ore-forming materials for the Tudui-Shawang gold deposit,we conducted sulfur and lead isotope analyses on sulfides,such as gold-bearing pyrite and sphalerite,during the main mineralization stage,as well as on the ore-associated monzogranite.Furthermore,LA-ICP-MS zircon U-Pb dating studies and lead isotope analyses were performed on the monzogranite closely linked with the gold mineralization to determine the age of mineralization.The δ34S values of five pyrite samples and three sphalerite samples range from -1.6‰ to 2.2‰ and -1.5‰ to 0.7‰,respectively,suggesting that the ore-forming materials originated from magmatic sources.The lead isotope ratios for the sulfides are 206Pb/204Pb:18.147~18.347,207Pb/204Pb:15.496~15.589,and 208Pb/204Pb:38.247~38.423.The lead isotope ratios for the monzogranite are 206Pb/204Pb:18.244~18.350,207Pb/204Pb:15.486~15.557,and 208Pb/204Pb:38.259~38.363.The ore-forming materials in the Tudui-Shawang gold deposit exhibit a mixed crust-mantle origin,as indicated by similar lead isotope results,in sulfide and monzogranite.LA-ICP-MS zircon U-Pb dating of monzogranite associated with gold mineralization yields a weighted average age of (116±2)Ma(N=17,MSWD=2.4),aligning with regional large-scale gold mineralization events,suggesting a late Early Cretaceous age for the mineralization.During this period,the Pacific plate subducted beneath the Eurasian,plate,transforming the North China Craton from extrusion to extension tectonics.This tectonic shift,characterized by mantle uplift and lithospheric thinning,triggered significant magmatic activity,facilitating crust-mantle material exchange and the formation of ore-bearing monzogranitic magma.Consequently,ore-bearing hydrothermal fluids were transported upward along the NE-tectonic faults to form the Tudui-Shawang gold deposit at shallow depth.

Graphical abstract

关键词

成矿物质来源 / 二长花岗岩 / LA-ICP-MS锆石U-Pb测年 / 土堆—沙旺金矿床 / 胶莱盆地

Key words

source of ore-forming materials / monzogranite / LA-ICP-MS zircon U-Pb dating / Tudui-Shawang gold deposit / Jiao-Lai Basin

引用本文

引用格式 ▾
方耀珩,杨群,彭晓蕾,王斌,李婵,李昊喆,陈思彤. 胶东土堆—沙旺金矿床成矿物质来源及含矿二长花岗岩年代学研究[J]. 黄金科学技术, 2025, 33(03): 467-481 DOI:10.11872/j.issn.1005-2518.2025.03.359

登录浏览全文

4963

注册一个新账户 忘记密码

胶东地区是我国最大的黄金生产区,近年来深部金矿找矿实现重大突破,新发现多个大型—超大型金矿床,金探明储量保持高位增长。胶莱盆地东北缘是近年来继牟平—乳山成矿带之后新发现的金矿化集中区,该区域分布有蓬家夼、发云夼、辽上、土堆—沙旺、西涝口和西井口等一系列金矿床,累计探获金资源量超过150 t(张连昌等,2002陈衍景等,2004宋英昕等,2017段留安等,2020宋明春等,2022韩小梦等,2024),成为区域金矿勘查的重要接续基地。
针对区内蓬家夼和辽上金矿床,前人提出2种典型矿化类型:蓬家夼式蚀变角砾岩型和辽上式黄铁矿碳酸盐脉型,其成矿模式与物质来源研究较为系统(孙丽伟,2015李国华等,20162017)。相比之下,相邻的土堆—沙旺金矿床(又称郭城金矿)研究程度相对薄弱,虽已探明金金属量19 054 kg,金平均品位为3.55×10-6高明波,2015),但关于其成因机制仍存在较多争议。在矿床成因上存在多种不同认识,包括受拆离构造体系控矿型金矿(孙丰月等,1995)、盆地边缘角砾岩型金矿(李红梅等,2010)、中温热液脉型金矿(陈昌昕,2015)和辽上式黄铁矿碳酸盐脉型金矿(李国华等,2017)等;在成矿物质来源上,也存在下地壳来源(李红梅等,2010)和壳—幔混源(谭俊,2009杨春福,2010Tan et al.,2015)的分歧。值得关注的是,陈昌昕(2015)李红梅等(2010)对矿区内硫化物的S同位素开展了分析,结果显示δ34S值变化范围为8.5‰~12.7‰,与荆山群中的δ34S值(+12.9‰)相似,指示部分硫源为荆山群(裘有守等,1988张竹如等,1999)。上述争议表明,当前针对土堆—沙旺金矿床的成岩成矿动力学机制、流体演化过程及物质源区示踪仍缺乏系统性研究。
鉴于此,本研究基于详细的岩相学和矿相学研究,以主成矿阶段硫化物(载金黄铁矿和闪锌矿)以及与矿化密切相关的二长花岗岩为研究对象,通过对比二者S、Pb同位素测试结果,查明成矿物质来源;通过开展与金矿化有密切成因联系的二长花岗岩LA-ICP-MS锆石U-Pb年代学研究,进一步厘定成矿时代,并结合区域构造演化历史,揭示成矿构造背景,为胶莱盆地东北缘金矿床理论研究及找矿勘查提供依据。

1 区域地质背景

土堆—沙旺金矿床位于胶莱盆地东北缘,华北板块胶东隆起东部,牟平—乳山金成矿带西侧,莱阳断陷北侧[图1(a)]。晚中生代胶东地区发生强烈的构造岩浆运动,成矿条件优越。区内主要出露古元古界荆山群和中生界白垩系莱阳群[图1(b)](纪攀等,2016李国华等,2017李勇等,2018)。荆山群含有石墨岩系、变粒岩、片麻岩、大理岩和透辉岩等;莱阳群以陆相碎屑沉积岩为主,主要岩石类型为砂岩、砾岩、页岩和粉砂岩。受多期次构造活动影响,区内断裂发育,尤其是大量发育NE、NNE和EW向断裂构造带。NE向大型断裂主要包括郭城、崖子、海阳—育黎、桃村断裂和NNE向金牛山断裂等,这些断裂带控制着区内金矿床的产出。郭城断裂形成于燕山晚期,控制着南果子、西涝口、郭城和辽上等金矿床的产出(张连昌等,20012002王志新等,2017薄军委等,2021梁辉等,2022)。区内发育元古宙和中生代岩浆岩。元古宙侵入岩为奥长花岗岩、中元古代辉石橄榄岩和新元古代黑云母二长花岗岩;中生代侵入岩以花岗质岩类为主,广泛分布于研究区北部、东部及南部区域,呈岩基或岩株、岩枝分布,与中生代金矿化关系密切[图1(b)]。

区域脉岩发育且分布广泛,主要有辉绿岩、正长岩、细晶岩、煌斑岩和闪长玢岩等,多为燕山晚期岩浆活动的产物。脉岩呈NNE 和NE走向,倾角介于70°~80°之间,多数脉岩切割金矿体(陈昌昕,2015张丕建等,2015乔增宝等,2016冯园园,2018梁辉等,2022)。

2 矿区及矿床地质特征

土堆—沙旺矿区基底主要由古元古代荆山群变质岩系组成,上覆中生代莱阳群沉积地层。岩浆岩以中生代二长花岗岩为主[图2(a)]。金矿体受控于NE向断裂,主要以石英—黄铁矿—多金属硫化物脉体的形式赋存于二长花岗岩中[图2(a)],少部分金矿体赋存于荆山群野头组大理岩中,矿体多为脉状、透镜状和似层状[图2(b)]。其中,28号矿体最具工业价值,呈脉状,走向为NNE,倾向为NW,延长1 000 m,延深60 m,厚度为0.69~3.70 m,金品位为2.82×10-6~18.68×10-6,平均金品位为6.24×10-6杨春福,2010陆军波等,2012)(图2)。

矿区赋矿围岩主要为二长花岗岩[图3(a)、3(b)],二长花岗岩中普遍发育绿泥石化、钾化[图3(c)]、硅化、绢云母化和黄铁矿化[图3(d)、3(e)]等蚀变并伴生金矿化,表明二长花岗岩岩体与金矿化关系较为密切。土堆—沙旺金矿床矿石构造主要为脉状、浸染状和斑杂状[图3(f)、3(g)]。金属矿物组合以黄铁矿为主,伴生有少量闪锌矿、黄铜矿和方铅矿等;脉石矿物以石英为主,其次为绿泥石、绿帘石和绢云母等,反映中—低温热液矿化环境。根据脉体穿切关系、矿物共生组合和围岩蚀变特征,将土堆—沙旺金矿床的热液成矿期划分为3个成矿阶段。

(1)阶段Ⅰ:粗粒黄铁矿—石英阶段。该阶段发生于金矿成矿作用早期,形成大量乳白色石英和少量钾长石,以硅化和钾化为主,伴随有少量粗粒自形黄铁矿,呈浸染状分布于石英脉中[图3(h)、3(i)]。

(2)阶段Ⅱ:自然金—石英—细粒黄铁矿阶段。该阶段为金的主要形成阶段,发育有大量黄铁矿化,并伴随强烈的硅化和绢云母化[图3(j)]。含金石英脉主要呈烟灰色,矿石矿物主要为细粒黄铁矿,其次为闪锌矿、方铅矿和自然金。细粒黄铁矿呈自形—半自形晶粒状结构,自然金呈他形晶粒状包裹于黄铁矿颗粒中[图3(k)];闪锌矿交代黄铁矿呈交代残余结构;黄铜矿于闪锌矿内部呈乳滴状,形成固溶体分离结构[图3(l)]。

(3)阶段Ⅲ:石英—碳酸盐阶段。该阶段主要发育大量低温方解石和少量石英,有少量黄铁矿呈浸染状分布于石英—方解石脉中,该阶段代表着热液成矿期的结束。

3 样品描述与分析测试方法

3.1 样品描述

用于S、Pb同位素测试的硫化物样品取自主成矿阶段的黄铁矿—多金属硫化物石英脉型金矿石(坐标:120°09′42″E,37°03′40″N)。主要矿石矿物为黄铁矿、闪锌矿和方铅矿等,主要脉石矿物为石英。通过手标本和显微镜下矿相学研究可知,金属矿物占比达30%~35%,其中黄铁矿和闪锌矿具有粒径较大、单矿物纯度高和易选的特征,保证了分析测试数据的精确性。同时,对与成矿密切相关的二长花岗岩进行了Pb同位素测试。

用于开展LA-ICP-MS锆石U-Pb同位素测年的二长花岗岩样品主要取自矿区外围(坐标:120°10′11″E,37°03′52″N)。岩石新鲜面呈肉红色,风化面呈红褐色,块状构造,中—细粒自形—半自形粒状结构,主要矿物为钾长石(35%)、斜长石(30%)和石英(25%),次要矿物为角闪石(5%)和黑云母(5%)。其中,钾长石粒径为2~3 mm,斜长石粒径约为2 mm,黑云母粒径约为1 mm,部分黑云母可见绢云母化,钾长石可见高岭土化,部分斜长石可见绢云母化[图3(b)、3(j)]。

3.2 分析测试方法

S、Pb同位素分析测试工作由核工业北京地质研究院分析测试中心承担。S同位素分析试验流程如下:矿石样品经破碎后,在显微镜下挑选纯度大于99%的黄铁矿或闪锌矿单矿物。将单矿物样品分别与Cu2O按既定比例混合均匀并研磨至180目,在真空度(2.0×10-2 Pa)环境下升温至980 ℃,恒温反应,使用液氮冷冻法收集反应产物中的SO2气体。S同位素定量分析采用MAT253稳定同位素质谱仪,测量过程采用 V-CDT国际参比体系进行δ34S比率标定,分析精度优于±0.2‰(刘汉彬等,2013)。

Pb同位素分析测试流程如下:严格选取纯度大于99%的硫化物单矿物样品,称取200 mg粉末样品置于聚四氟乙烯材质低压密闭溶样罐(PFA)中,依次加入由氢氟酸(HF)、硝酸(HNO3)和高氯酸(HClO4)组成的混合酸体系中进行阶梯式消解,待反应体系完全澄清后,蒸发至溶液近干,加入6 mol/L的盐酸(HCl)转为氯化物,二次蒸发至盐类结晶析出。加入1 mL(0.5 mol/L)HBr溶液复溶干渣,离心分离10 min,取上清液加入阴离子交换柱(AG1-x8树脂250 μL,100~200目),采用0.5 mol/L的HBr溶液淋洗杂质,在聚四氟乙烯烧杯中加入1 mL(6 mol/L)HCl用于解析Pb,将最终收集的含铅组分于聚四氟乙烯烧杯内进行低温蒸干处理。Pb同位素分析采用ISOPROBE-T热电离固体同位素质谱仪,用磷酸硅胶将处理后的含铅样品均匀涂在铼带上,用静态接受方式测量Pb同位素比值。

锆石单矿物的分选、靶样制作、反射光显微照相、透射光显微图像采集和阴极发光(CL)分析工作均在北京锆年领航科技有限公司完成。锆石样品采用LA-ICP-MS技术开展U-Pb同位素测试工作,测试工作由国土资源部东北亚矿产资源评价重点实验室承担。数据解译阶段采用Glitter 4.0软件处理锆石同位素数据,并使用Anderson进行普通铅校正计算(Andersen,2002)。加权平均年龄和U-Pb谐和图采用ISOPLOT 3.0绘制(Ludwig,2003)。

4 分析测试结果

4.1 S、Pb同位素

黄铁矿和闪锌矿样品S、Pb同位素以及赋矿二长花岗岩的Pb同位素测试分析结果见表1。由表1可知,5件黄铁矿样品的δ34SV-CDT介于-1.6‰~2.2‰,极差为3.8‰,平均值为0.4‰;3件闪锌矿样品的δ34SV-CDT介于-1.5‰~0.7‰,极差为2.2‰,平均值为-0.6‰。此外,5件黄铁矿样品的206Pb/204Pb比值变化范围为18.147~18.330,207Pb/204Pb比值介于15.496~15.589之间,208Pb/204Pb比值变化范围为38.276~38.423;3件闪锌矿的206Pb/204Pb比值介于18.190~18.347之间,207Pb/204Pb比值变化范围为15.535~15.576,208Pb/204Pb比值介于38.247~38.413之间;3件二长花岗岩样品的206Pb/204Pb比值介于18.244~18.350之间,207Pb/204Pb比值介于15.486~15.557之间,208Pb/204Pb比值变化范围为38.259~38.363。

将测试结果输入GeoKit软件计算Pb同位素的其他相关参数(路远发,2004)。计算得出5件黄铁矿样品的Th/U比值介于3.74~3.83之间,μ值变化范围为9.27~9.47,Δβ值变化范围为10.95~18.00,Δγ值变化范围为29.45~38.22;3件闪锌矿样品的Th/U比值介于3.75~3.78之间,μ值变化范围为9.35~9.43,Δβ值变化范围为13.98~16.72,Δγ值变化范围为32.84~33.32;3件二长花岗岩样品的Th/U比值范围为3.68~3.77,μ值变化范围为9.26~9.39,Δβ值变化范围为10.51~15.19,Δγ值变化范围为27.78~33.11。

4.2 锆石LA-ICP-MS U-Pb同位素测年

根据岩相学观察,二长花岗岩中的锆石呈现典型岩浆结晶特征,晶体多呈自形—半自形晶,以短柱状—长柱状晶形为主(长轴为70~150 μm,长宽比为1.5~2.0),锆石颗粒晶面平整且表面光洁。阴极发光图像(CL)显示,所有锆石均显示完好的岩浆成因结构特征,发育明暗相间的韵律环带(图4)。17粒锆石中Th含量介于286×10-6~766×10-6之间,U含量介于565×10-6~1 270×10-6之间,Th/U比值范围介于0.3~0.7之间,均大于0.1。锆石的CL图像和Th、U含量及Th/U比值特征表明锆石均为岩浆成因(Koschek,1993宋彪等,2002张磊等,2013)(表2)。17个测试结果均落在谐和线上,具有很好的一致性,表明测试结果具有高置信度。测得锆石的206Pb/238U年龄在112~122 Ma之间,其中谐和年龄为(119±2)Ma(N=17,MSWD=1.02),加权平均年龄为(116±2)Ma(N=17,MSWD=2.4)(图5),二者在误差范围内基本一致,表明与成矿作用相关的二长花岗岩岩体的结晶年龄为早白垩世晚期。

5 讨论

5.1 成矿物质来源

土堆—沙旺金矿床的成矿物质来源一直存在争议。李红梅等(2010)对该矿床矿石中磁黄铁矿和黄铁矿开展S、Pb同位素分析,测试结果显示硫化物的δ34S值介于+8.5‰~+12.7‰之间,高于地幔硫,与区域上荆山群中的δ34S值(+12.9‰)(张竹如等,1999)相似,认为荆山群为金矿化的主要物源层。另外,谭俊(2009)根据土堆—沙旺金矿床矿石硫化物Au/Cu和Ag/Au比值基本相等的研究结果,认为土堆—沙旺金矿床的成矿物质主要来自脉岩。前人对该矿区成矿流体H、O同位素的研究结果表明,成矿流体以岩浆水为主,在成矿作用进行中伴有大气降水的混入(李红梅等,2010陈昌昕,2015梁辉等,2022)。区域上从栖霞成矿带至牟平—乳山成矿带,成矿流体以岩浆水为主,具有大气水混合的特征,与胶东地区金矿床成矿流体整体特征规律相似(杨立强等,2014)。区域上金青顶金矿床矿床成因与土堆—沙旺金矿床相似,针对该矿床不同矿化阶段及蚀变程度的二长花岗岩开展的地球化学研究结果显示,该矿区围岩(新鲜和蚀变二长花岗岩) 与不同阶段硫化物矿石微量元素地球化学特征相似。Cs、Rb、Ba和U等大离子亲石元素(LILE)相对富集,Th、Nb、Ta、Ti和Hf等高场强元素(HFSE)相对亏损(李健等,2022),稀土元素(REE)配分模式显示轻稀土元素(LREE)富集和重稀土元素(HREE)亏损的特征,具有典型的岛弧岩浆岩特征。结合锆石测年结果[(116±2)Ma],认为二长花岗岩形成于古太平洋板块洋板块俯冲、回撤的构造背景体制下。进一步研究表明二长花岗岩与金矿化密切相关,成矿物质可能来源于二长花岗岩。

胶东地区主要的矿源岩为中生代花岗岩和前寒武变质岩系地层,晚中生代强烈的构造岩浆运动引起区域上大规模金矿化。胶东西北部地区金矿的δ34S变化范围为0.20‰~12.60‰,说明硫源为中生代花岗岩类和古元古代变质岩系(宋明春等,2020)。本研究对土堆—沙旺金矿床中主成矿阶段的载金黄铁矿和闪锌矿开展了详细的S和Pb同位素分析,5件载金黄铁矿δ34S值变化范围为-1.6‰~2.2‰,与3件闪锌矿的δ34S值(-1.5‰~0.7‰)相似[图6(a)],且变化范围较小,接近地幔硫δ34S值的变化范围(δ34S=0)(张德会等,2013)。测试结果表明,土堆—沙旺金矿床主要来源于岩浆(孟祥金等,2006)。宋明春等(2020)提出胶东金矿具有双重来源,中生代花岗岩类是形成金矿的直接矿源岩。大量研究结果表明,胶东地区金矿成矿时间为120 Ma(于晓卫等,2023),成矿作用与中生代晚期岩浆作用有关,成矿物质主要来源于岩浆。

本次研究对5件载金黄铁矿和3件闪锌矿开展了Pb同位素测试分析,结果表明黄铁矿和闪锌矿的Pb同位素值相近,在208Pb/204Pb-206Pb/204Pb图解[图6(b)]和207Pb/204Pb-206Pb/204Pb图解[图6(c)]中,均落在地幔与造山带演化曲线之间,表明成矿物质具有壳—幔混源的特征。在Δγβ图解[图6(d)]中,硫化物样品点均落入上地壳与地幔混合的俯冲带铅的范围内。胶东地区金矿硫化物矿石与周围地质体Pb同位素均具有下地壳铅特征,成矿物质主要来自被交代地幔改造的古老下地壳(范宏瑞等,2005李士先等,2007杨立强等,2014宋明春等,2022)。本研究与区域上的研究结果一致,进一步佐证了成矿物质来源于壳—幔混源。

综上所述,主成矿阶段的金属硫化物S、Pb同位素特征表明,成矿物质来源于岩浆,而非地层。为了进一步验证本研究结论,对与成矿密切相关的二长花岗岩开展了Pb同位素分析,结果表明在208Pb/204Pb-206Pb/204Pb图解[图6(b)]和207Pb/204Pb-206Pb/204Pb图解[图6(c)]中,二长花岗岩的样品点与黄铁矿和闪锌矿的Pb同位素基本一致,表明土堆—沙旺金矿床的成矿物质来源于二长花岗岩。

5.2 成矿时代

关于胶东金矿床的成矿时代积累了大量的研究资料(张连昌等,2002陈衍景等,2004),而土堆—沙旺金矿床的成矿时代研究相对较少。为了限定土堆—沙旺金矿床的成矿时代,本研究选择与金矿化关系密切的二长花岗岩开展了LA-ICP-MS锆石U-Pb测年研究,17粒锆石的206Pb/238U年龄介于112~122 Ma之间,加权平均年龄为(116.0±2)Ma(MSWD=2.4)(图4),表明二长花岗岩的侵位结晶年龄为早白垩世晚期。本次研究获得的二长花岗岩年龄数据为该地区晚白垩世岩浆活动提供了新的年代学证据。尽管地表出露的牧牛山岩体主要为古元古代(冯波等,2013郭云成等,2022周晓萍等,2022a),但本次获得的年龄数据暗示深部可能存在晚白垩世岩浆岩体,指示该地区在晚白垩世经历了岩浆活动事件。

本文测得土堆—沙旺金矿床成矿时代与区域上胶莱盆地周边金矿区的金矿床年代学研究成果相吻合(表3)。如西涝口矿区煌斑岩锆石年龄为(118.6±1.5)Ma(周晓萍等,2022b);蓬家夼金矿床中与金矿化关系密切的闪长岩锆石U-Pb年龄分别为(122.9±3)Ma和(123.9±4)Ma(孙丽伟,2015);辽上金矿床黄铁矿的Rb-Sr等时线年龄为(117.9±2)Ma(MSWD=1.3)(丁正江等,2021)。胶东地区金矿具有集中爆发式成矿的特点,本文研究结果与胶东矿集区在(120±3)Ma(早白垩世)之间爆发大规模金成矿作用的观点一致(Deng et al.,2020Zhang et al.,2020)。区域上早白垩世早期郭家岭期花岗岩属于壳幔混合型花岗岩,形成时间为135~123 Ma,与其相关的金矿成矿年龄为133~120 Ma(于晓卫等,2023);临近的牟平—乳山成矿带,成矿时间集中在121.6~116.9 Ma之间(何江涛,2021)。结合区域上成矿年代研究结果,认为土堆—沙旺金矿床成岩成矿作用发生于早白垩世晚期。

5.3 成矿构造背景

胶东地区金矿主要分布于招远—莱州、蓬莱—栖霞和牟平—乳山三大金成矿带之中(孙丰月等,19941995),金成矿作用发生于晚中生代燕山期[(120±5)Ma],与古太平洋板块俯冲引发的岩石圈减薄及胶莱盆地拉张背景密切相关(Song et al.,2023)。研究区位于牟平—乳山成矿带西侧,毗邻苏鲁超高压变质带北缘,其成矿动力学背景受控于华北克拉通破坏和多期构造—岩浆叠加作用,综合成矿地质背景、矿床地质特征和同位素年代学证据,认为土堆—沙旺金矿床属于早白垩世燕山期岩浆热液脉型金矿床。

胶东半岛构造基底由前寒武系变质岩系和中生代侵入岩组成。三叠纪扬子板块与华北板块的俯冲碰撞形成苏鲁—大别超高压变质带与NE向构造格局。侏罗纪以来古太平洋构造体系的叠加导致胶东半岛下地壳发生部分熔融,引发大规模中生代岩浆活动,自西向东形成了一系列二长花岗岩和花岗闪长岩为主的中生代岩浆岩(宋明春等,2020Wang et al.,2022)。中生代早白垩世晚期(120±10)Ma,由于古太平洋俯冲板片的回撤,使整个胶东地区处于伸展拉张的构造环境,岩石圈拆沉减薄,软流圈物质上涌与壳幔相互作用强烈,华北克拉通破坏作用达到高潮,胶莱盆地在此背景下形成。胶东金矿的爆发式成矿[(120±5)Ma]与克拉通破坏及伸展构造背景密切相关,矿体严格受控于NE向和NNE向断裂(Tan et al.,2008Yang et al.,2017Deng et al.,2020邓军等,2023Wang et al.,2023)。

胶莱盆地成矿流体系统具有多源性:大气水沿构造裂隙下渗,与幔源流体混合,共同萃取矿源岩中的Au元素,形成成矿流体。NE向断裂(如郭城断裂)作为导矿—容矿构造,为流体运移提供了通道,是矿床的主要控矿因素,在韧—脆性转换带因压力骤降和流体不混溶导致金沉淀(张华全等,2008冯园园,2018王斌等,2021),并在断裂有利部位富集成矿,形成土堆—沙旺金矿床。

6 结论

(1)主成矿阶段黄铁矿和闪锌矿的S、Pb同位素以及二长花岗岩的Pb同位素分析结果表明,土堆—沙旺金矿床成矿物质来源于二长花岗岩,二长花岗岩与金矿化在时间、空间及成因上关系密切。

(2)采用LA-ICP-MS对土堆—沙旺金矿床成矿期二长花岗岩进行锆石U-Pb测年,获得加权平均年龄为(116±2)Ma,表明该矿床成岩成矿作用发生于早白垩世晚期。由于太平洋俯冲板片回撤,岩石圈拆沉减薄作用影响,深部壳幔混合源区含矿热液,运移侵入至合适的构造部位形成土堆—沙旺岩浆热液脉型金矿床。

参考文献

[1]

Andersen T2002.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology192(1/2):59-79.

[2]

Bo JunweiDing ZhengjiangSong Mingchun,et al,2021.C,O,S and Pb isotopic compositions and genesis of the Liaoshang gold deposit in Jiaodong Peninsula[J].Acta Petrologica et Mineralogica40(2):321-336.

[3]

Chen Changxin2015.Study on the Geological Characteristics and Ore Genesis of Tudui-Shawang Gold Deposit in Guocheng City,Shandong Province[D].Changchun:Jilin University.

[4]

Chen YanjingPirajno FLai Yong,et al,2004.Metallogenic time and tectonic settong of the Jiaodong gold province,esatern China[J].Acta Petrologica Sinica20(4):907-922.

[5]

Deng JYang L QGroves D I,et al,2020.An integrated mineral system model for the gold deposits of the giant Jiaodong province,Eastern China[J].Earth-Science Reviews,208:103274.

[6]

Deng JunWang QingfeiZhang Liang,et al,2023.Metallogenetic model of Jiaodong-type gold deposits,Eastern China[J].Scientia Sinica (Terrae)53(10):2323-2347.

[7]

Ding ZhengjiangSong MingchunDeng Jun,et al,2021.Geological characteristics and Rb-Sr and Sm-Nd isotope mineralisation chronology of a new type of gold deposit Liaoshang style pyrite carbonate vein type gold deposit,northeastern China[C]//First National Mineral Exploration Conference.Hefei:Chinese Geophysical Society.

[8]

Duan LiuanWei YoufengChen Xiongjun,et al,2020.Potential analysis of gold resources in Qianchuiliu mining area,northeast margin of Jiaolai Basin,Shandong Province[J].Gold Science and Technology28(5):701-711.

[9]

Fan HongruiHu FangfangYang Jinhui,et al,2005.Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J].Acta Petrologica Sinica21(5):1317-1328.

[10]

Feng BoLi HongmeiWei Xingliang,et al,2013.Chronological study on Muniushan pluton in Guocheng District of Jiaodong Peninsula and its geological significance[J].Gold34(4):24-28.

[11]

Feng Yuanyuan2018.Discussion on structural control of gold deposits in the Tudui-Shawan area,Haiyang,Shandong[J].World Nonferrous Metals,(7):121-122.

[12]

Gao Mingbo,2015.Discussion on the metallogenic law of gold ore in Tudui mining area, City HaiyangProvince Shandong,and work suggestion[C]//Geological Society of China 2015 Compilation of Abstracts from the Annual Academic Conference(Second Volume).Jinan:The First Geological and Mineral Exploration Institute of Shandong Province.

[13]

Guo YunchengDuan LiuanHan Xiaomeng,et al,2022.Zircon U-Pb age and geochemical characteristics of granites from the Qianchuiliu gold mine in the Jiaodong Peninsula and its geological significance[J].Geoscience36(3):876-897.

[14]

Han XiaomengDuan LiuanZhao Pengfei,et al,2024.Pyrite Rb-Sr isochron age of the Qianchuiliu gold deposit on northeastern margin of Jiaolai Basin,Shandong Province[J].Geology in China51(1):366-367.

[15]

He Jiangtao2021.Gold Mineralization and Post-ore Denudation in the Muping-Rushan Gold Belt,Jiaodong Peninsula,Eastern China[D].Beijing:China University of Geosciences.

[16]

Ji PanDing ZhengjiangLi Guohua,et al,2016.Geological characteristics of Liaoshang oversize gold deposit in Jiaodong Peninsula[J].Shandong Land and Resources32(6):9-13.

[17]

Koschek G1993.Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy171(3):223-232.

[18]

Li GuohuaDing ZhengjiangJi Pan,et al,2016.Features and prospecting direction of the gold deposits in the northeastern margin of the Jiaolai Basin[J].Geology and Exploration52(6):1029-1036.

[19]

Li GuohuaDing ZhengjiangSong Mingchun,et al,2017.The Liaoshang pyrite-carbonate veined deposit:A new type of gold deposit in Jiaodong Peninsula[J].Acta Geoscientica Sinica38(3):423-429.

[20]

Li HongmeiWei JunhaoWang Qi,et al,2010.Isotopic composition features and ore-forming mechanism of the Tudui-Shawang gold deposit in Shandong Province[J].Acta Geoscientica Sinica31(6):791-802.

[21]

Li JianSong MingchunYu Jiantao,et al,2022.Genesis of Jinqingding gold deposit in eastern Jiaodong Peninsula:Aonstrain from trace elements of sulfide ore and wall-rock[J].Geological Bulletin of China41(6):1010-1022.

[22]

Li ShixianLiu ChangchunAn Yuhong,et al.,2007.Geology of Gold Deposits in Jiaodong Peninsula[M].Beijing:Geological Publishing House.

[23]

Li YongDing ZhengjiangBo Junwei,et al,2018.Geochemical characteristics of ore-forming elements and metallogenic potentiality in the gold mineralization area of northeast margin of Jiaolai Basin[J].Gold39(8):15-21.

[24]

Liang HuiHan ZuozhenWang Ligong,et al,2022.The fluid inclusions,H-O-C-S-Pb isotopic characteristics and genesis of the Liaoshang gold deposit in Jiaodong Peninsula[J].Geological Bulletin of China41(6):1053-1067.

[25]

Liu HanbinJin GuishanLi Junjie,et al,2013.Determination of stable isotope composition in uranium geological samples[J].World Nuclear Geoscience30(3):174-179.

[26]

Liu X YTan JHe H Y,et al,2021.Origin of the Tudui-Shawang gold deposit,Jiaodong Peninsula,North China Craton:Constraints from fluid inclusion and H-O-He-Ar-S-Pb isotopic compositions[J].Ore Geology Reviews,133:104125.

[27]

Lu JunboQin LianyuanZhang Meng,et al,2012.Analysis on the orebody characteristics and mineralization regularity of Tudui-Shawang gold deposit in Shandong Province[J].Gold Science and Technology20(5):52-57.

[28]

Lu Yuanfa2004.GeoKit—A geochemical toolkit for Microsoft Excel[J].Geochimica33(5):459-464.

[29]

Ludwig K R2003.Isoplot 3.0,A geochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publications,California,4:72.

[30]

Meng XiangjinHou ZengqianLi Zhenqing2006.Sulfur and lead isotope compositions of the Qulong porphyry copper deposit,Tibet:Implications for the sources of plutons and metals in the deposit[J].Acta Geologica Sinica80(4):554-560.

[31]

Ohmoto H1972.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology67(5):551-578.

[32]

Qiao ZengbaoFeng YuanyuanLi Dadou,et al,2016.Zoning characteristics and prospecting prospects of primary halo in gold deposits in Tudui-Shawang area in Haiyang City of Shandong Province[J].Shandong Land and Resources32(12):19-24.

[33]

Qiu YoushouWang KonghaiYang Guanghua,et al,1988.Reg-ional Metallogenic Conditions of Gold Mines in Zhaoyuan-Yexian Area,Shandong Province,China[M].Shenyang:Liaoning Science and Technology Publishing House.

[34]

Song BiaoZhang YuhaiLiu Dunyi2002.Introduction to the naissance of SHRIMP and its contribution to isotope geology[J].Journal of Chinese Mass Spectrometry Society23(1):58-62.

[35]

Song M CSong Y XLi J,et al,2023.Thermal doming-extension metallogenic system of Jiaodong type gold deposits[J].Acta Petrologica Sinica39(5):1241-1260.

[36]

Song MingchunLin ShaoyiYang Liqiang,et al,2020.Metallogenic model of Jiaodong Peninsula gold deposits[J].Mineral Deposits39(2):215-236.

[37]

Song MingchunYang LiqiangFan Hongrui,et al,2022.Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action[J].Geological Bulletin of China41(6):903-935.

[38]

Song YingxinSong MingchunDing Zhengjiang,et al,2017.Major advances on deep prospecting in Jiaodong gold ore cluster and its metallogenic characteristics[J].Gold Science and Technology25(3):4-18.

[39]

Sun Fengyue1994.Mesozoic Cenozoic regional tectonic evolution and gold mineralization in Jiaodong area,Shandong Province[J].Journal of Jilin University(Earth Science Edition)24(4):378-384.

[40]

Sun FengyueShi ZhunliFeng Benzhi1995.Gold Geology of Jiaodong Peninsula and Differentiation of Mantle—Derive C-H-O Fluids Petrogenesis and Mineralisation[M].Changchun:Jilin People’s Publishing House.

[41]

Sun Liwei2015.The Study of the Geological Characteristics and Enrichment Regularities of Mineralization of Pengjiakuang Deposit in Rushan County,Shandong Province[D].Changchun:Jilin University.

[42]

Tan JWei J HGuo L L,et al,2008.LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes,Guocheng,Jiaodong Peninsula:Implications for North China Craton lithosphere evolution[J].Science in China Series D:Earth Sciences51(10):1483-1500.

[43]

Tan JWei J HLi Y J,et al,2015.Origin and geodynamic significance of fault-hosted massive sulfide gold deposits from the Guocheng-Liaoshang metallogenic belt,eastern Jiaodong Peninsula:Rb-Sr dating,and H-O-S-Pb isotopic constraints[J].Ore Geology Reviews,65:687-700.

[44]

Tan Jun2009.Magmatic Evolution Process of Dikes in Guocheng Fault Zone,Jiaodong Peninsula:Implications for North China Craton Lithosphere Thinning and Gold Ore Formation[D].Wuhan:China University of Geosciences.

[45]

Tang WenlongFu ChaoZou Jian,et al,2021.LA-ICP-MS U-Pb isotopic chronology of monazite from Tangjiagou gold deposit in Jiaodong and its geological significance[J].Acta Geologica Sinica95(3):809-821.

[46]

Wang BDing Z JBao Z Y,et al,2022.Mesozoic magmatic and geodynamic evolution in the Jiaodong Peninsula,China:Implications for the gold and polymetallic mineralization[J].Minerals12(9):1073.

[47]

Wang BZhou J BDing Z J,et al,2023.Late Mesozoic magmatism and gold metallogeny of the Jiaodong Peninsula,China:A response to the destruction of the North China Craton[J].GSA Bulletin136(3/4):1395-1412.

[48]

Wang BinSong MingchunHuo Guang,et al,2021.Source characteristics and tectonic evolution of Late Mesozoic granites in Jiaodong and their implications for gold mineralization[J].Acta Petrologica et Mineralogica40(2):288-320.

[49]

Wang ZhixinJiao XiumeiDing Zhengjiang,et al,2017.Feature of ore-controlling structure and prospecting direction for the Liaoshang-type gold deposit in the northeast margin of Jiaolai Basin,Shandong Province[J].Gold Science and Technology25(3):61-69.

[50]

Xue JianlingPang ZhenshanLi Shengrong,et al,2019.The genesis of Denggezhuang gold deposit in Jiaodong:Constraints from multigeological chronology and isotope system[J].Acta Petrologica Sinica35(5):1532-1550.

[51]

Yang Chunfu2010.Mineralization characteristics of gold deposit in the Guocheng Region,Haiyang,Shandong Province[J].Geology and Exploration46(3):462-469.

[52]

Yang L QDeng JWang Z L,et al,2017.Relationships between gold mineralization and magmatism in the Jiaodong Peninsula,China[J].Ore Geology Reviews,88:619-637.

[53]

Yang LiqiangDeng JunWang Zhongliang,et al,2014.Mesozoic gold metallogenic system of the Jiaodong gold province,Eastern China[J].Acta Petrologica Sinica30(9):2447-2467.

[54]

Yu XiaoweiWang LaimingLiu Handong,et al,2023.The relationship between Mesozoic granite,gold deposits and the division of metallogenic period in eastern Sandong[J].Acta Geologica Sinica97(6):1848-1873.

[55]

Zartman R EDoe B R1981.Plumbotectonics—The model[J].Tectonophysics75(1/2):135-162.

[56]

Zhang DehuiZhao LunshanZhang Benren,et al,2013.Geochemistry[M].Beijing:Geological Publishing House.

[57]

Zhang HuaquanZhang WeixinLi Hongjie2008.Ore-formation conditions and exploration orientation of the gold deposite in Jiaolai Basin,Shandong Province[J].Gold Science and Technology16(2):12-17,23.

[58]

Zhang LWeinberg R FYang L Q,et al,2020.Mesozoic orogenic gold mineralization in the Jiaodong Peninsula,China:A focused event at 120±2 Ma during cooling of pregold granite intrusions[J].Economic Geology115(2):415-441.

[59]

Zhang LeiLi QiugenShi Xingjun,et al,2013.Zircon U-Pb age and geochemistry of the Permian Yongqing granodiorite intrusion in Jiamusi massif of Northeast China and their implications[J].Acta Petrologica et Mineralogica32(6):1022-1036.

[60]

Zhang LianchangShen YuanchaoLiu Tiebing,et al,2002.Sulfur,lead,carbon and oxygen isotope geochemistry of Pengjiakuang gold deposit in Shandong Province[J].Acta Mineralogica Sinica22(3):255-260.

[61]

Zhang LianchangShen YuanchaoZeng Qingdong,et al,2001.Sulfur and lead isotopic geochemistry of gold deposits at the Northern Margin of Jiaolai Basin,East Shandong[J].Bulletin of Mineralogy,Petrology and Geochemistry20(4):380-384.

[62]

Zhang PijianLiu DianhaoLi Guohua,et al,2015.Marginal zone of Mesozoic basin in Jiaodong area—The cradle of large(super-large)scale type gold deposits[J].Shandong Land and Resources31(4):1-8.

[63]

Zhang ZhuruChen Shizhen1999.Superlarge gold deposit exploration perspective in Jiaolai Basin of Jiaodong gold metallogenetic domain[J].Geochimica28(3):203-212.

[64]

Zhou XiaopingHu BingqianZhou Mingling,et al,2022b.Geological characteristics,zircon U-Pb age and its records for tectonomagmatic events of lamprophyres in Xilaokou gold deposit,northeast margin of Jiaolai Basin[J].Geological Bulletin of China41(9):1634-1647.

[65]

Zhou XiaopingJunyang Hu Bingqian,et al,2022a.Zircon U-Pb and Lu-Hf isotopes of Muniushan monzogranite in Xilaokou area,Jiaobei Terrane—Indicating Paleoproterozoic magmatism and crustal evolution of the North China Craton[J].Geological Review68(3):891-906.

[66]

Zhu Bingquan1998.Theory and Application of Isotope System in Earth Science[M].Beijing:Science Press.

[67]

薄军委,丁正江,宋明春,等,2021.胶东辽上金矿床C、O、S、Pb同位素组成及矿床成因[J].岩石矿物学杂志40(2):321-336.

[68]

陈昌昕,2015.山东郭城土堆—沙旺金矿床地质特征及矿床成因研究[D].长春:吉林大学.

[69]

陈衍景, Franco Pirajno,赖勇,等,2004.胶东矿集区大规模成矿时间和构造环境[J].岩石学报20(4):907-922.

[70]

邓军,王庆飞,张良,等,2023.胶东型金矿成因模型[J].中国科学:地球科学53(10):2323-2347.

[71]

丁正江,宋明春,邓军,等,2021.一种新类型金矿的地质特征及Rb-Sr和Sm-Nd同位素成矿年代学——中国东北部辽上式黄铁矿碳酸盐脉型金矿床[C]//首届全国矿产勘查大会论文集.合肥:中国地球物理学会.

[72]

段留安,魏有峰,陈雄军,等,2020.山东胶莱盆地东北缘前垂柳矿区金矿资源潜力分析[J].黄金科学技术28(5):701-711.

[73]

范宏瑞,胡芳芳,杨进辉,等,2005.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报21(5):1317-1328.

[74]

冯波,李红梅,魏兴亮,等,2013.胶东郭城地区牧牛山岩体年代学研究及其地质意义[J].黄金34(4):24-28.

[75]

冯园园,2018.山东省海阳市土堆—沙旺地区金矿构造控矿规律探讨[J].世界有色金属,(7):121-122.

[76]

高明波,2015.山东省海阳市土堆矿区金矿成矿规律探讨及工作建议[C]//中国地质学会2015学术年会论文摘要汇编(下册).济南:山东省第一地质矿产勘查院.

[77]

郭云成,段留安,韩小梦,等,2022.胶东前垂柳金矿区花岗岩锆石U-Pb年代学和地球化学特征及其地质意义[J].现代地质36(3):876-897.

[78]

韩小梦,段留安,赵鹏飞,等,2024.山东省胶莱盆地东北缘前垂柳金矿床黄铁矿Rb-Sr等时线年龄[J].中国地质51(1):366-367.

[79]

何江涛,2021.胶东牟乳成矿带金矿成矿作用及改造保存[D].北京:中国地质大学(北京).

[80]

纪攀,丁正江,李国华,等,2016.胶东辽上特大型金矿床地质特征[J].山东国土资源32(6):9-13.

[81]

李国华,丁正江,纪攀,等,2016.胶莱盆地东北缘地区金矿特征及找矿方向[J].地质与勘探52(6):1029-1036.

[82]

李国华,丁正江,宋明春,等,2017.胶东新类型金矿——辽上黄铁矿碳酸盐脉型金矿[J].地球学报38(3):423-429.

[83]

李红梅,魏俊浩,王启,等,2010.山东土堆—沙旺金矿床同位素组成特征及矿床成因讨论[J].地球学报31(6):791-802.

[84]

李健,宋明春,于建涛,等,2022.胶东东部金青顶金矿床成因:硫化物矿石与围岩微量元素的制约[J].地质通报41(6):1010-1022.

[85]

李士先,刘长春,安郁宏,等,2007.胶东金矿地质[M].北京:地质出版社.

[86]

李勇,丁正江,薄军委,等,2018.胶莱盆地东北缘地区成矿元素地球化学特征及成矿潜力分析[J].黄金39(8):15-21.

[87]

梁辉,韩作振,王立功,等,2022.胶东辽上金矿床的流体包裹体、氢—氧—碳—硫—铅同位素特征及矿床成因[J].地质通报41(6):1053-1067.

[88]

刘汉彬,金贵善,李军杰,等,2013.铀矿地质样品的稳定同位素组成测试方法[J].世界核地质科学30(3):174-179.

[89]

陆军波,秦连元,张蒙,等,2012.山东土堆—沙旺金矿床矿体特征及成矿规律浅析[J].黄金科学技术20(5):52-57.

[90]

路远发,2004.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学33(5):459-464.

[91]

孟祥金,侯增谦,李振清,2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报80(4):554-560.

[92]

乔增宝,冯园园,李大兜,等,2016.山东省海阳市土堆—沙旺地区金矿床原生晕分带特征及找矿前景[J].山东国土资源32(12):19-24.

[93]

裘有守,王孔海,杨广华,等,1988.山东招远—掖县地区金矿区域成矿条件[M].沈阳:辽宁科学技术出版社.

[94]

宋彪,张玉海,刘敦一,2002.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J].质谱学报23(1):58-62.

[95]

宋明春,林少一,杨立强,等,2020.胶东金矿成矿模式[J].矿床地质39(2):215-236.

[96]

宋明春,杨立强,范宏瑞,等,2022.找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J].地质通报41(6):903-935.

[97]

宋英昕,宋明春,丁正江,等,2017.胶东金矿集区深部找矿重要进展及成矿特征[J].黄金科学技术25(3):4-18.

[98]

孙丰月,1994.胶东地区中新生代区域构造演化与成矿[J].吉林大学学报(地球科学版)24(4):378-385.

[99]

孙丰月,石准立,冯本智,1995.胶东金矿地质及幔源C-H-O流体分异成岩成矿[M].长春:吉林人民出版社.

[100]

孙丽伟,2015.胶东乳山蓬家夼金矿床地质特征及矿化富集规律研究[D].长春:吉林大学.

[101]

谭俊,2009.胶东郭城断裂带脉岩岩浆演化过程:对岩石圈演化及金成矿的制约[D].武汉:中国地质大学.

[102]

唐文龙,付超,邹键,等,2021.胶东唐家沟金矿床独居石LA-ICP-MS U-Pb同位素年代学及其地质意义[J].地质学报95(3):809-821.

[103]

王斌,宋明春,霍光,等,2021.胶东晚中生代花岗岩的源区性质与构造环境演化及其对金成矿的启示[J].岩石矿物学杂志40(2):288-320.

[104]

王志新,焦秀美,丁正江,等,2017.胶莱盆地东北缘辽上式金矿构造控矿特征及找矿方向[J].黄金科学技术25(3):61-69.

[105]

薛建玲,庞振山,李胜荣,等,2019.胶东邓格庄金矿床成因:地质年代学和同位素体系制约[J].岩石学报35(5):1532-1550.

[106]

杨春福,2010.山东海阳郭城地区金矿床成矿特征[J].地质与勘探46(3):462-469.

[107]

杨立强,邓军,王中亮,等,2014.胶东中生代金成矿系统[J].岩石学报30(9):2447-2467.

[108]

于晓卫,王来明,刘汉栋,等,2023.胶东中生代花岗岩与金矿关系及成矿期划分[J].地质学报97(6):1848-1873.

[109]

张德会,赵仑山,张本仁,等,2013.地球化学[M].北京:地质出版社.

[110]

张华全,张维昕,李洪杰,2008.山东胶莱盆地金矿成矿条件及找矿方向[J].黄金科学技术16(2):12-17,23.

[111]

张磊,李秋根,史兴俊,等,2013.佳木斯地块中部二叠纪永清花岗闪长岩的锆石U-Pb年龄、地球化学特征及其地质意义[J].岩石矿物学杂志32(6):1022-1036.

[112]

张连昌,沈远超,刘铁兵,等,2002.山东蓬家夼金矿硫铅碳氧同位素地球化学[J].矿物学报22(3):255-260.

[113]

张连昌,沈远超,曾庆栋,等,2001.山东中生代胶莱盆地北缘金矿床硫铅同位素地球化学[J].矿物岩石地球化学通报20(4):380-384.

[114]

张丕建,刘殿浩,李国华,等,2015.胶东中生代盆地边缘区——大(超大)型金矿的摇篮[J].山东国土资源31(4):1-8.

[115]

张竹如,陈世桢,1999.胶东金成矿域胶莱盆地中超大型金矿床找矿远景[J].地球化学28(3):203-212.

[116]

周晓萍,胡秉谦,周明岭,等,2022b.胶莱盆地东北缘西涝口金矿煌斑岩脉岩石地球化学、锆石U-Pb年龄及其对构造岩浆事件的记录[J].地质通报41(9):1634-1647.

[117]

周晓萍,吕军阳,胡秉谦,等,2022a.胶北地体西涝口地区牧牛山二长花岗岩锆石U-Pb和Lu-Hf同位素研究——指示华北克拉通古元古代岩浆作用及地壳演化[J].地质论评68(3):891-906.

[118]

朱炳泉,1998.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社.

基金资助

山东省深部金矿探测大数据应用开发工程实验室项目“胶莱盆地土堆—沙旺金矿床成矿机理研究”(SDK202220)

AI Summary AI Mindmap
PDF (7882KB)

484

访问

0

被引

详细

导航
相关文章

AI思维导图

/