Study on the Influence of Pore Water Change on the Characterization and Compressibility-Permeability of Fine-Grained Sediment During Hydrate Depressurization Mining
Fine-grained sediments are integral to the evolution of reservoir properties during the depres-surization and decomposition of unconventional clean energy sources,such as gas hydrates.As gas migrates from the dissociated hydrate to the production well,it releases substantial amounts of fresh water and induces chemical alterations in the pore fluid.The diminutive size and distinctive properties of fine particles render them particularly sensitive to changes in the electrical forces between particles,which are modulated by variations in pore water composition.Consequently,it is imperative to consider the impact of changes in pore fluid chemistry on the macro- and micro-properties of reservoirs during hydrate exploitation.This study seeks to predict alterations in sediment compressibility and permeability resulting from chemical changes in the pore fluid by analyzing the electrical sensitivity index of various representative fine-grained soils(such as cohesive clay-montmorillonite with a particle size of ≤75 μm and non-cohesive soillike diatom).Additionally,it investigates the behavior of fine-grained sediments during hydrate decomposition under diverse pore fluid conditions.The findings indicate that diatom exhibits significant plasticity but possesses moderate to low electrical sensitivity,whereas montmorillonite displays high electrical sensitivity.The compressibility of diatom,ranked from highest to lowest:Is observed in non-polar representative fluid(kerosene),seawater representative fluid(brine),and deionized water. Owing to its distinctive internal structure,diatom demonstrates both high compressibility and elevated hydraulic conductivity.Conversely,the compressibility of montmorillonite is ordered as follows:Deionized water,brine,and kerosene.Moreover,diatom consistently exhibits greater compressibility than montmorillonite across all pore fluids.Additionally,under deionized water conditions,the hydrate within diatom requires a longer decomposition time compared to montmorillonite. However,under brine conditions,the opposite trend is observed,with brine facilitating a more rapid decomposition of hydrate in diatom. This study further elucidates that the chemistry of pore fluids can influence particle fabric,thereby affecting the compressibility and permeability of sedimentary reservoirs. Furthermore,the electrical sensitivity of fine-grained soils can also impact the behavior of hydrate dissociation.
天然气水合物是一种具有广阔前景的非常规清洁能源,广泛分布于海底沉积物和极地冻土带(Hassanpouryouzband et al.,2020;He et al.,2024;Li et al.,2024a)。然而,天然气水合物开采过程可能引发储层的地质力学响应,如降压开采导致的孔压降低和瞬时有效应力增加,以及孔隙流体变化引起的土层压缩性和渗透性改变。研究表明,南海原位沉积物的渗透性随孔隙流体盐浓度的增加而增强,但受应力影响则减弱(宋德坤等,2024)。水合物的存在通过改变孔隙结构影响沉积物中水的相对渗透率(王自豪等,2022),而储层中多孔介质的粒径和轴向压力变化也会影响渗透率(曾家明等,2021)。通过对粉质储层中不同水合物饱和度的CH4和CO2水合物粉质沉积物进行一系列各向同性固结试验和剪切试验,结果表明,水合物的存在降低了粉质沉积物的压缩和膨胀指数(Luo et al.,2020)。在减压产气条件下,砂—黏土互层含气水合物矿床的地质力学响应表现为无水合物黏土层渗透率增强和储层压实程度加大(Sohn et al.,2024)。储层渗透率的增加会导致井底降压幅度的增加,从而进一步导致沉降速率和沉降量的增加(万义钊等,2018)。研究还指出,水合物分解尺度对海底地质稳定性具有显著影响,大规模分解可能导致海底下沉甚至滑坡,降压开采过程中海底沉降发生率可达20%(Song et al.,2019)。
电化学敏感度指数(SE)采用含相对液限(LL)参数来定义(Jang et al.,2016),是分析细颗粒对孔隙流体化学变化的反应能力,计算公式如下:
式中:LLDW、LLbrine和LLker分别为在去离子水、盐水和煤油中测量的液限。
根据以往研究(Jang et al.,2016),细粒土可根据电化学敏感度划分为低敏感、中等敏感和高敏感。根据细粒沉积物的塑性,将它们分类为无、低、中或高塑性。如表1所示,硅藻土的塑限(PL)高于蒙脱土,但塑性指数(PI=LL-PL)远低于蒙脱土。因此,硅藻土被认为是具有较高塑性的测试材料,这是由于硅藻土独特的多孔结构使得沉积物可以饱含额外的水分。硅藻土具有中—低电化学敏感度指数,因为在去离子水和盐水中硅藻土的液限相似,但对介电常数(煤油)的变化(LLker/LLbrine)反应较为敏感。相比之下,蒙脱土颗粒小且表面多余电荷较多,对孔隙水化学中离子浓度(盐水)和介电常数(煤油)的变化均表现出强烈的响应,因此,蒙脱土是所有测试的细颗粒沉积物中具有最高的电化学敏感度的细粒。当细粒沉积物对孔隙流体变化极其敏感时,岩土沉积层中细粒物质组成和孔隙流体性质的变化均对水合物储层性能起着至关重要的作用,这些细颗粒的变化可能会损害或增强地层的地质力学性质。因此,探索与地质力学参数(如压缩性、渗透率和储层强度等)相关的细粒土电化学敏感度是必要的。
ASTM,2011. Standard test methods for one-dimensional consolidation properties of soils using incremental loading:D2435-11 [S].West Conshohocken, PA:ASTM International.
[2]
BahkJ J, KimD H, ChunJ H,et al,2013.Gas hydrate occurrences and their relation to host sediment properties:Results from Second Ulleung Basin Gas Hydrate Drilling Expedition,East Sea[J].Marine and Petroleum Geology,47:21-29.
[3]
BurlandJ B,1990.On the compressibility and shear strength of natural clays[J].Geotechnique,40(3):329-378.
[4]
CaoS C, DaiS, JungJ,2016.Supercritical CO2 and brine displacement in geological carbon sequestration:Micromodel and pore network simulation studies[J].International Journal of Greenhouse Gas Control,44:104-114.
[5]
CaoS C, JangJ, JungJ,et al,2019.2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments[J].Marine and Petroleum Geology,108:714-730.
[6]
CaoS C, YuanY L, JungJ,et al,2024.Effects of end-member sediments on CO2 hydrate formation:Implications for geological carbon storage[J].Advances in Geo-Energy Research,14(3):224-237.
[7]
CeratoA B, LuteneggerA J,2004.Determining intrinsic compressibility of fine-grained soils[J].Journal of Geotechnical and Geoenvironmental Engineering,130(8):872-877.
[8]
ChenH D, LuoM, JiangD L,et al,2023.Research on the formation and plugging risk of gas hydrate in a deepwater drilling wellbore:A case study[J].Processes,11(2):488.
[9]
EgawaK, NishimuraO, IzumiS,et al,2015.Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site[J].Marine and Petroleum Geology,66:379-387.
[10]
GuanD W, QuA X, WangZ F,et al,2023.Fluid flow-induced fine particle migration and its effects on gas and water production behavior from gas hydrate reservoir[J].Applied Energy,331:120327.
[11]
HassanpouryouzbandA, JoonakiE, Vasheghani FarahaniM,et al,2020.Gas hydrates in sustainable chemistry[J].Che-mical Society Reviews,49(15):5225-5309.
[12]
HeJ, HuangX, CaoP,2024.Fine particle migration in a gas hydrate sand:Single- and two-phase fluid using a device for observation at the pore scale[J].Journal of Marine Science and Engineering,12(1):109.
[13]
JangJ, Carlos SantamarinaJ,2016.Fines classification based on sensitivity to pore-fluid chemistry[J].Journal of Geotechni-cal and Geoenvironmental Engineering,142(4):06015018.
[14]
JungJ, KangH, CaoS C,et al,2019.Effects of fine-grained particles’ migration and clogging in porous media on gas production from hydrate-bearing sediments[J].Geofluids,(1):5061216.
[15]
JungJ, WanJ,2011.Wettability alteration upon reaction with scCO 2:Silica,mica,and calcite[C]//AGU Fall Meeting Abstracts.Washington:American Geophysical Union.
[16]
LiGuangxin,2016.Advanced Soil Mochanics[M].2ed.Beijing:Tsinghua University Press.
[17]
LiL J, LiX S, WangY,et al,2024a.Study on the settlement characteristics of hydrate bearing sediment caused by gas production with the depressurization method[J].Energy and Fuels,38(7):5810-5821.
[18]
LiR R, HanZ H, ZhangL Q,et al,2024b.Numerical determination of anisotropic permeability for unconsolidated hydrate reservoir:A DEM-CFD coupling method[J].Journal of Marine Science and Engineering,12(8):1447.
[19]
LiuQ, ZhaoB, SantamarinaJ C,2019.Particle migration and clogging in porous media:A convergent flow microfluidics study[J].Journal of Geophysical Research:Solid Earth,124(9):9495-9504.
[20]
LiuY J, WangL Z, HongY,et al,2023b.Coupled thermo-hydro-mechanical-chemical modeling of fines migration in hydrate-bearing sediments with CFD-DEM[J].Canadian Geo-technical Journal,60(5):701-717.
[21]
LiuY W, FuM L, WangC Q,et al,2023a.The damage caused by particle migration to low-permeability reservoirs and its effect on the seepage capacity after CO2 flooding[J].Processes,11(12):3279.
[22]
LuoT T, LiY H, MadhusudhanB N,et al,2020.Comparative analysis of the consolidation and shear behaviors of CH4 and CO2 hydrate-bearing silty sediments[J].Journal of Natural Gas Science and Engineering,75:103157.
[23]
PrempehK O K, ChequerL, BadalyanA,et al,2020.Effects of the capillary-entrapped phase on fines migration in porous media[J].Journal of Natural Gas Science and Engineering,73:103047.
[24]
RenJ J, ZengS Y, ChenD Y,et al,2023.Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration[J].Applied Energy,340:120997.
[25]
RussellT, PhamD, NeishaboorM T,et al,2017.Effects of kaolinite in rocks on fines migration[J].Journal of Natural Gas Science and Engineering,45:243-255.
ShiptonB, CoopM R,2012.On the compression behaviour of reconstituted soils[J].Soils and Foundations,52(4):668-681.
[28]
SohnY, ParkT, KwonT H,2024.Geomechanical responses of sand-clay interbedded gas hydrate-bearing deposits under depressurization-driven gas production at site UBGH2-6 in Ulleung Basin,offshore Korea[J].Gas Science and Engine-ering,126:205337.
[29]
SongB J, ChengY F, YanC L,et al,2019.Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation[J].Journal of Natural Gas Science and Engineering,65:197-211.
[30]
SongDekun, LiuLele, WangDong,2024.Experimental study on the sensitivity of hydraulic permeability of fine-grained sediments sampled from a gas hydrate distribution area in the northern South China Sea[J].Earth Science Frontiers,31(6):405-414.
[31]
SunX L, TurchynA V,2014.Significant contribution of authigenic carbonate to marine carbon burial[J].Nature Geoscience,7(3):201-204.
[32]
TanakaH, LocatJ,1999.A microstructural investigation of Osaka Bay clay:The impact of microfossils on its mechanical behaviour[J].Canadian Geotechnical Journal,36(3):493-508.
WanYizhao, WuNengyou, HuGaowei,et al,2018.Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J].Natural Gas Industry,38(4):117-128.
[35]
WangT, FanZ Y, SunL J,et al,2024.Pore-scale behaviors of CO2 hydrate formation and dissociation in the presence of swelling clay:Implication for geologic carbon sequestration[J].Energy,308:132678.
[36]
WangZihao, WanYizhao, LiuLele,et al,2022.Research advan-ces in gas-water relative permeability of hydrate-bearing sediments[J].Marine Geology Frontiers,38(2):14-29.
[37]
WeitemeyerK, ConstableS, KeyK,2006.Marine EM techniques for gas-hydrate detection and hazard mitigation[J].The Leading Edge,25(5):629-632.
[38]
WuN Y, YangS X, ZhangH Q,et al,2008.Preliminary discussion on gas hydrate reservoir system of Shenhu Area,North Slope of South China Sea[C]//Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008),Vancouver,BritishColumbia,Canada,July 6-10,2008.
[39]
YeJ L, QinX W, XieW W,et al,2020.The second natural gas hydrate production test in the South China Sea[J].China Geology,3(2):197-209.
[40]
ZeinijahromiA, FarajzadehR, Hans BruiningJ,et al,2016.Effect of fines migration on oil-water relative permeability during two-phase flow in porous media[J].Fuel,176:222-236.
[41]
ZengJiaming, LiDongliang, LiangDeqing,et al,2021.Experimental study on permeability of hydrate sediments[J].Advances in New and Renewable Energy,9(3):232-238.
[42]
ZhangDongxu, LiuCheng, SongLechun,et al,2024.Nucleation process of gas hydrates in the emulsion system:A review[J].Chemical Industry and Engineering Progress,43(6):3007-3020.
[43]
ZhangP W, ZhouY X, LiuB G,et al,2022.Multiphase flow model coupled with fine particle migration for applications in offshore gas hydrate extraction[J].Journal of Natural Gas Science and Engineering,102:104586.
[44]
ZhangWei, LiHaoyang, XuChungang,et al,2022.Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J].CIESC Journal,73(9):3815-3827.
[45]
ZhouZ Q, RanjithP G, YangW M,et al,2019.A new set of scaling relationships for DEM-CFD simulations of fluid-solid coupling problems in saturated and cohesiveless granular soils[J].Computational Particle Mechanics,6(4):657-669.