胃癌治疗的新视角:铁死亡和血管生成拟态
文婷婷 , 陈金玥 , 刘瑞 , 李苗苗 , 季盼盼 , 李娟
中国现代医学杂志 ›› 2025, Vol. 35 ›› Issue (12) : 46 -52.
胃癌治疗的新视角:铁死亡和血管生成拟态
A new perspective on gastric cancer treatment: ferroptosis and vasculogenic mimicry
Gastric cancer is one of the most lethal malignancies worldwide and is associated with a poor prognosis. Ferroptosis, a form of cell death dependent on iron, has become a research hotspot in recent years due to its role in the development and progression of gastric cancer. Additionally, vasculogenic mimicry (VM), a tumor-associated blood supply mechanism that functions independently of endothelial cells or traditional angiogenesis, has been proven to significantly impact the prognosis and treatment outcomes of gastric cancer. Therefore, exploring the relationship between ferroptosis and VM may help identify new diagnostic biomarkers and therapeutic targets for gastric cancer, thereby improving patient survival rates. This review is the first to systematically summarize the bidirectional regulatory mechanisms between ferroptosis and VM in gastric cancer, and to propose potential strategies for targeted combination therapy.
gastric cancer / ferroptosis / vasculogenic mimicry
| [1] |
LI Q H, GUO G Q, CHEN Y L, et al. HCP5 derived novel microprotein triggers progression of gastric cancer through regulating ferroptosis[J]. Adv Sci (Weinh), 2024, 11(46): 2407012. |
| [2] |
李惠子, 袁忆航, 张全安. 外周血microRNA-18a-5p、FLR、NLR水平与中晚期胃癌患者预后的关系[J]. 中国现代医学杂志, 2025, 35(8): 73-78. |
| [3] |
AI Y W, MENG Y T, YAN B, et al. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death[J]. Mol Cell, 2024, 84(1): 170-179. |
| [4] |
JIN X, TANG J R, QIU X Y, et al. Ferroptosis: emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation[J]. Cell Death Discov, 2024, 10(1): 45. |
| [5] |
REN Y Q, MAO X R, XU H, et al. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance[J]. Cell Mol Life Sci, 2023, 80(9): 263. |
| [6] |
WANG M, LI B, MENG W R, et al. System Xc- exacerbates metabolic stress under glucose depletion in oral squamous cell carcinoma[J]. Oral Dis, 2024, 30(5): 2952-2964. |
| [7] |
YAN Y L, TENG H Q, HANG Q L, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells[J]. Nat Commun, 2023, 14(1): 3673. |
| [8] |
董辉, 王晶, 杨丹, LncRNA ZEB2-AS1联合亲本基因ZEB2在卵巢癌SKOV3细胞中的作用及其机制研究[J]. 中国现代医学杂志, 2024, 34(13): 28-40. |
| [9] |
LI Y, CHEN S J, RAO H, et al. MicroRNA gets a mighty award[J]. Adv Sci (Weinh), 2025, 12(7): e2414625. |
| [10] |
HU X Y, MIAO J Y, ZHANG M, et al. miRNA-103a-3p promotes human gastric cancer cell proliferation by targeting and suppressing ATF7 in vitro[J]. Mol Cells, 2018, 41(5): 390-400. |
| [11] |
RU Q, LI Y S, CHEN L, et al. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects[J]. Signal Transduct Target Ther, 2024, 9(1): 271. |
| [12] |
YANG Z Q, ZOU S M, ZHANG Y J, et al. ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis[J]. Nat Commun, 2023, 14(1): 4193. |
| [13] |
ZHAN J H, WANG J S, LIANG Y Q, et al. P53 together with ferroptosis: a promising strategy leaving cancer cells without escape[J]. Acta Biochim Biophys Sin (Shanghai), 2024, 56(1): 1-14. |
| [14] |
CONTE M, ARMANI A, CONTE G, et al. Muscle-specific perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy[J]. J Cachexia Sarcopenia Muscle, 2019, 10(1): 95-110. |
| [15] |
SUN X Y, YANG S J, FENG X C, et al. The modification of ferroptosis and abnormal lipometabolism through overexpression and knockdown of potential prognostic biomarker perilipin2 in gastric carcinoma[J]. Gastric Cancer, 2020, 23(2): 241-259. |
| [16] |
WANG Y D, GAN X J, CHENG X J, et al. ABCC2 induces metabolic vulnerability and cellular ferroptosis via enhanced glutathione efflux in gastric cancer[J]. Clin Transl Med, 2024, 14(8): e1754. |
| [17] |
TANG H B, CHEN L X, LIU X D, et al. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets[J]. Front Pharmacol, 2024, 15: 1346719. |
| [18] |
MURAI T, MATSUDA S. Targeting the PI3K-Akt-mTOR signaling pathway involved in vasculogenic mimicry promoted by cancer stem cells[J]. Am J Cancer Res, 2023, 13(11): 5039-5046. |
| [19] |
XU X Y, ZONG Y, GAO Y X, et al. VEGF induce vasculogenic mimicry of choroidal melanoma through the PI3k signal pathway[J]. Biomed Res Int, 2019, 2019: 3909102. |
| [20] |
de VISSER K E, JOYCE J A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. |
| [21] |
SUI X Y, WANG J C, ZHAO Z Q, et al. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction[J]. Commun Biol, 2024, 7(1): 199. |
| [22] |
JIANG Z Y, ZHOU J, DENG J Q, et al. Emerging roles of ferroptosis-related miRNAs in tumor metastasis[J]. Cell Death Discov, 2023, 9(1): 193. |
| [23] |
LIANG F G, ZANDKARIMI F, LEE J, et al. OPA1 promotes ferroptosis by augmenting mitochondrial ROS and suppressing an integrated stress response[J]. Mol Cell, 2024, 84(16): 3098-3114.e6. |
| [24] |
LI M, GU Y J, ZHANG Z G, et al. Vasculogenic mimicry: a new prognostic sign of gastric adenocarcinoma[J]. Pathol Oncol Res, 2010, 16(2): 259-266. |
| [25] |
ZHAO Y, XING C, DENG Y T, et al. HIF-1α signaling: essential roles in tumorigenesis and implications in targeted therapies[J]. Genes Dis, 2024, 11(1): 234-251. |
| [26] |
YAN J Q, ZHANG N, ZHANG Z Z, et al. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance[J]. J Control Release, 2021, 329: 36-49. |
| [27] |
李亚玲, 白彝华, 凡洋, 铁死亡与炎症信号通路之间相互作用的研究进展[J]. 中国临床研究, 2024, 37(12): 1928-1931. |
| [28] |
LIU H, XUE H, GUO Q, et al. Ferroptosis meets inflammation: a new frontier in cancer therapy[J]. Cancer Lett, 2025, 620: 217696. |
| [29] |
YANG Z, SU W, WEI X Y, et al. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1[J]. Cell Rep, 2023, 42(8): 112945. |
| [30] |
CHEN J, HUANG Z Y, CHEN Y, et al. Lactate and lactylation in cancer[J]. Signal Transduct Target Ther, 2025, 10(1): 38. |
| [31] |
ZHAO W W, ZHANG Z, XIE M Y, et al. Exploring tumor-associated macrophages in glioblastoma: from diversity to therapy[J]. NPJ Precis Oncol, 2025, 9(1): 126. |
| [32] |
LI X L, YANG Y Y, ZHANG B, et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 305. |
| [33] |
GAO W L, HE R H, REN J H, et al. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway[J]. FEBS Open Bio, 2021, 11(5): 1364-1373. |
| [34] |
ZHANG L, LI X M, SHI X H, et al. Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma[J]. Acta Pharmacol Sin, 2023, 44(3): 622-634. |
| [35] |
HUANG B, WANG H, LIU S, et al. Palmitoylation-dependent regulation of GPX4 suppresses ferroptosis[J]. Nat Commun, 2025, 16(1): 867. |
| [36] |
惠锋, 马守成, 裴霞霞. 信迪利单抗、贝伐珠单抗联合肝动脉化疗栓塞术在中晚期肝癌患者中的临床应用[J]. 中国现代医学杂志, 2024, 34(6): 86-91. |
| [37] |
ZHAO L Y, PENG Y M, HE S X, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer[J]. Gastric Cancer, 2021, 24(3): 642-654. |
| [38] |
BAI J W, QIU S Q, ZHANG G J. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions[J]. Signal Transduct Target Ther, 2023, 8(1): 89. |
| [39] |
WANG W X, WANG T T, ZHANG Y, et al. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells[J]. Oncol Res, 2024, 32(3): 489-502. |
甘肃省自然科学基金(23JRRA1288)
/
| 〈 |
|
〉 |