基于免疫细胞再生障碍性贫血发病机制的研究进展
Research progress on the pathogenesis of aplastic anemia based on immune cells
Aplastic anemia (AA) is a hematological disorder characterized by reduction or failure of bone marrow hematopoiesis caused by multiple factors. This article reviews recent reports on the pathogenesis of AA related to immune cells, including T lymphocytes, B lymphocytes, NK cells, dendritic cells, and macrophages. It provides evidence and perspectives for further research on the pathogenesis and new therapeutic targets of AA.
aplastic anemia / immune cells / pathogenesis / T lymphocytes
| [1] |
中华医学会血液学分会红细胞疾病(贫血)学组. 再生障碍性贫血诊断与治疗中国指南(2022年版)[J]. 中华血液学杂志, 2022, 43(11): 881-888. |
| [2] |
BEN HAMZA A, WELTERS C, STADLER S, et al. Virus-reactive T cells expanded in aplastic anemia eliminate hematopoietic progenitor cells by molecular mimicry[J]. Blood, 2024, 143(14): 1365-1378. |
| [3] |
张强, 李庆, 徐静玮, 再生障碍性贫血患者T细胞亚群检测的临床意义[J]. 中国实验血液学杂志, 2007, 15(5): 1046-1049. |
| [4] |
REN J, HOU X Y, MA S H, et al. Elevated expression of CX3C chemokine receptor 1 mediates recruitment of T cells into bone marrow of patients with acquired aplastic anaemia[J]. J Intern Med, 2014, 276(5): 512-524. |
| [5] |
ZHENG M Y, LIU C Y, FU R, et al. Abnormal immunomodulatory ability on memory T cells in humans with severe aplastic anemia[J]. Int J Clin Exp Pathol, 2015, 8(4): 3659-3669. |
| [6] |
XIE J J, LI B, YAO B, et al. Transforming growth factor-β1-regulated Fas/FasL pathway activation suppresses nucleus pulposus cell apoptosis in an inflammatory environment[J]. Biosci Rep, 2020, 40(2): BSR20191726. |
| [7] |
REN X, GE M L, HUO J L, et al. IFN-γ and TNF-α synergistically induce mesenchymal stem/stromal cell death via RIPK1-independent necroptosis[J]. Blood, 2023, 142(S1): 5624. |
| [8] |
SU R, ZHANG T T, WANG H, et al. New sights of low dose IL-2: restoration of immune homeostasis for viral infection[J]. Immunology, 2024, 171(3): 324-338. |
| [9] |
LIU B N, ZENG L J, SHAO Y Y, et al. Expression and function of SLAMF6 in CD8+ T lymphocytes of patients with severe aplastic anemia[J]. Cell Immunol, 2021, 364: 104343. |
| [10] |
ZENG W, MACIEJEWSKI J P, CHEN G, et al. Limited heterogeneity of T cell receptor BV usage in aplastic anemia[J]. J Clin Invest, 2001, 108(5): 765-773. |
| [11] |
GIANNAKOULAS N C, KARAKANTZA M, THEODOROU G L, et al. Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients[J]. Br J Haematol, 2004, 124(1): 97-105. |
| [12] |
王明良, 王亚鹏, 孙斌斌. 流式细胞术检测Th1/Th2在再生障碍性贫血中发病机制的研究[C]//2016年«中国医院药学杂志»学术年会. 昆明: 中国医院药学杂志编辑部, 2016: 62. |
| [13] |
SHAO Y Y, LIU B N, HE L, et al. Molecular mechanisms underlying the role of HLA-DQ in systemic immune activation in severe aplastic anemia[J]. Blood Cells Mol Dis, 2023, 98: 102708. |
| [14] |
徐炜, 舒俊华, 干意, Th17/Treg细胞免疫平衡的相关调控机制研究进展[J]. 中国现代医学杂志, 2023, 33(24): 48-54. |
| [15] |
齐薇薇, 付蓉, 王化泉, 重型再生障碍性贫血患者外周血调节性T细胞的数量异常及其临床意义[J]. 中国实验血液学杂志, 2014, 22(4): 1043-1046. |
| [16] |
HUANG L F, HUANG J B, TANG N N, et al. Insufficient phosphorylation of STAT5 in Tregs inhibits the expression of BLIMP-1 but not IRF4, reduction the proportion of Tregs in pediatric aplastic anemia[J]. Heliyon, 2024, 10(5): e26731. |
| [17] |
HIRAKAWA M, MATOS T R, LIU H Y, et al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells[J]. JCI insight, 2016, 1(18): e89278. |
| [18] |
程海, 曹江, 陈伟, 再生障碍性贫血患者外周血Th17细胞亚群水平及临床意义[J]. 中国实验血液学杂志, 2020, 28(1): 218-224. |
| [19] |
GARTSHTEYN Y, ASKANASE A D, MOR A. SLAM associated protein signaling in T cells: tilting the balance toward autoimmunity[J]. Front Immunol, 2021, 12: 654839. |
| [20] |
李延卿, 任伟宏, 张岱, Th17和调节性T细胞在人类免疫缺陷病毒疾病进展中的作用及其调控机制[J]. 中国现代医学杂志, 2024, 34(16): 45-50. |
| [21] |
GUO R Q, KONG J J, TANG P, et al. Unbiased single-cell sequencing of hematopoietic and immune cells from aplastic anemia reveals the contributors of hematopoiesis failure and dysfunctional immune regulation[J]. Adv Sci (Weinh), 2024, 11(10): 2304539. |
| [22] |
TANG S Q, XING T, LYU Z S, et al. Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia[J]. Sci China Life Sci, 2023, 66(11): 2553-2570. |
| [23] |
HU T L, ZHAN Y N, YU X L, et al. Single-cell RNA-seq of bone marrow cells in aplastic anemia[J]. Front Genet, 2022, 12: 745483. |
| [24] |
ZAIMOKU Y, PATEL B A, KAJIGAYA S, et al. Deficit of circulating CD19+ CD24hi CD38hi regulatory B cells in severe aplastic anaemia[J]. Br J Haematol, 2020, 190(4): 610-617. |
| [25] |
李志赏, 邵宗鸿, 付蓉, 重型再生障碍性贫血患者外周血自然杀伤细胞亚群百分比及功能变化[J]. 中华医学杂志, 2011, 91(16): 1084-1087. |
| [26] |
CHEN T, ZHANG T, LIU C Y, et al. NK cells suppress CD8+ T cell immunity via NKG2D in severe aplastic anemia[J]. Cell Immunol, 2019, 335: 6-14. |
| [27] |
LI Y, DING S X, LIU C Y, et al. Abnormalities of quantities and functions of CD56bright natural killer cells in non-severe aplastic anemia[J]. Hematology, 2019, 24(1): 405-412. |
| [28] |
LIU Z X, ZHANG T, LIU C Y, et al. P749: the role of increased irf1 expression of natural killer cells in the immune pathogenesis of severe aplastic anaemia[J]. HemaSphere, 2023, 7(S3): e0873513. |
| [29] |
DING S X, ZHANG T, LEI Y Y, et al. The role of TIM3+ NK and TIM3- NK cells in the immune pathogenesis of severe aplastic anemia[J]. J Transl Int Med, 2024, 12(1): 96-105. |
| [30] |
LIU C Y, CHEN Y Y, LU D, et al. Single-cell transcriptomic analysis of PB and BM NK cells from severe aplastic anaemia patients[J]. Clin Transl Med, 2022, 12(12): e1092. |
| [31] |
GAO M J, ZHANG D L, XU R R. Advances in understanding the role of dendritic cells in aplastic anaemia[J]. Scand J Immunol, 2023, 97(5): e13265. |
| [32] |
CHEN L Y, HUO J L, REN X, et al. Myeloid dendritic cells were expanded and functionally stronger in aplastic anemia[J]. Blood, 2023, 142, Supplement 1: 5657. |
| [33] |
FUNES S C, MANRIQUE de LARA A, ALTAMIRANO-LAGOS M J, et al. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy[J]. Autoimmun Rev, 2019, 18(4): 359-368. |
| [34] |
MCCABE A, SMITH J N P, COSTELLO A, et al. Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression[J]. Haematologica, 2018, 103(9): 1451-1461. |
| [35] |
SEYFRIED A N, MCCABE A, SMITH J N P, et al. CCR5 maintains macrophages in the bone marrow and drives hematopoietic failure in a mouse model of severe aplastic anemia[J]. Leukemia, 2021, 35(11): 3139-3151. |
| [36] |
SUN W L, WU Z J, LIN Z H, et al. Macrophage TNF-α licenses donor T cells in murine bone marrow failure and can be implicated in human aplastic anemia[J]. Blood, 2018, 132(26): 2730-2743. |
| [37] |
ZHONG C W, LIANG X W, LIU C Y, et al. P768: preliminary exploration on lag-3 expression of bone marrow-derived macrophages in severe aplastic anemia[J]. HemaSphere, 2023, 7(S3): e526709a. |
| [38] |
FU R, ZHANG T, DENG L, et al. The role of TLR4 inducing macrophage pyroptosis in the pathogenesis of severe aplastic anemia[J]. Blood, 2021, 138(S1): 1114. |
| [39] |
康虹阳, 刘洁, 陈哲, Cxcr4基因修饰的BMSC来源外泌体对再生障碍性贫血的改善作用及机制研究[J]. 中国实验血液学杂志, 2022, 30(3): 824-831. |
国家自然科学基金(82474490)
黑龙江省重点研发计划项目(2023ZX06C15)
哈尔滨市科技计划自筹经费项目(2022ZCZJNS063)
/
| 〈 |
|
〉 |