tNGS对肺炎患者痰液/肺泡灌洗液标本病原体检测的影响及指导抗生素治疗的价值
许圣慧 , 邸沂遥 , 高耐芬 , 闫丽娟 , 车琮璐 , 王坤芳
中国现代医学杂志 ›› 2025, Vol. 35 ›› Issue (11) : 7 -12.
tNGS对肺炎患者痰液/肺泡灌洗液标本病原体检测的影响及指导抗生素治疗的价值
Impact of targeted next-generation sequencing on pathogen detection in sputum/bronchoalveolar lavage fluid samples from pneumonia patients and its role in guiding antibiotic therapy
Objective To analyze the impact of targeted next-generation sequencing (tNGS) on pathogen detection in sputum/bronchoalveolar lavage fluid (BALF) samples from pneumonia patients and its value in guiding antibiotic therapy. Methods This study included 125 pneumonia patients admitted between March 2022 and March 2024. Sputum/BALF samples were processed for microbiological culture and tNGS analysis. Turnaround time and detection rates were compared. Cohen's Kappa coefficient assessed agreement between methods, and subgroup analyses (gender, age, disease severity, underlying pulmonary diseases) were performed. Results tNGS had a shorter turnaround time (P < 0.05) and higher pathogen detection rate (P < 0.05) versus microbiological culture. Moderate agreement was observed (Kappa = 0.510, P < 0.05). No subgroup differences in tNGS positivity were found (P > 0.05). Conclusion tNGS improves pathogen detection efficiency in pneumonia, enabling timely antibiotic optimization and enhanced clinical management.
肺炎 / 靶向病原高通量测序 / 病原体培养检测 / 肺泡灌洗液 / 痰液 / 抗生素
pneumonia / targeted next-generation sequencing / pathology culture testing / alveolar lavage fluid / sputum / antibiotic
| [1] |
徐艳丽, 付杰. 血小板分布宽度联合肌酸激酶同工酶检测对肺炎支原体肺炎患儿预后的预测价值[J]. 中国现代医学杂志, 2024, 34(21): 22-27. |
| [2] |
LI T M, SU X T, LU P L, et al. Bone marrow mesenchymal stem cell-derived dermcidin-containing migrasomes enhance LC3-associated phagocytosis of pulmonary macrophages and protect against post-stroke pneumonia[J]. Adv Sci (Weinh), 2023, 10(22): e2206432. |
| [3] |
MARINUCCI V, LOUZON P R, CARR A L, et al. Pharmacist-driven methicillin-resistant s. aureus polymerase chain reaction testing for pneumonia[J]. Ann Pharmacother, 2023, 57(5): 560-569. |
| [4] |
GASTON D C, MILLER H B, FISSEL J A, et al. Evaluation of metagenomic and targeted next-generation sequencing workflows for detection of respiratory pathogens from bronchoalveolar lavage fluid specimens[J]. J Clin Microbiol, 2022, 60(7): e0052622. |
| [5] |
GAN M Y, ZHANG Y Y, YAN G F, et al. Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients[J]. Ann Clin Microbiol Antimicrob, 2024, 23(1): 33. |
| [6] |
中华医学会, 中华医学会临床药学分会, 中华医学会杂志社, 成人社区获得性肺炎基层合理用药指南[J]. 中华全科医师杂志, 2020, 19(9): 783-791. |
| [7] |
尚红, 王毓三, 申子瑜. 全国临床检验操作规程[M]. 第4版. 北京: 人民卫生出版社, 2015: 69-71. |
| [8] |
宋慧娟, 肖政, 余万军, 基于血清炎症标志物构建儿童肺炎支原体肺炎合并胸腔积液的预警模型[J]. 中国现代医学杂志, 2024, 34(21): 15-21. |
| [9] |
MOY A C, KIMMOUN A, MERKLING T, et al. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: a systematic review and meta-analysis[J]. Anaesth Crit Care Pain Med, 2023, 42(6): 101300. |
| [10] |
CARTULIARES M B, ROSENVINGE F S, MOGENSEN C B, et al. Evaluation of point-of-care multiplex polymerase chain reaction in guiding antibiotic treatment of patients acutely admitted with suspected community-acquired pneumonia in Denmark: a multicentre randomised controlled trial[J]. PLoS Med, 2023, 20(11): e1004314. |
| [11] |
HARTWIG C, DRECHSLER S, VAINSHTEIN Y, et al. From gut to blood: spatial and temporal pathobiome dynamics during acute abdominal murine sepsis[J]. Microorganisms, 2023, 11(3): 627. |
| [12] |
HONG H L, FLURIN L, THOENDEL M J, et al. Targeted versus shotgun metagenomic sequencing-based detection of microorganisms in sonicate fluid for periprosthetic joint infection diagnosis[J]. Clin Infect Dis, 2023, 76(3): e1456-e1462. |
| [13] |
LI P Z, FENG X X, CHEN B Y, et al. The detection of foodborne pathogenic bacteria in seafood using a multiplex polymerase chain reaction system[J]. Foods, 2022, 11(23): 3909. |
| [14] |
KIRYLUK K, SANCHEZ-RODRIGUEZ E, ZHOU X J, et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy[J]. Nat Genet, 2023, 55(7): 1091-1105. |
| [15] |
KULLAR R, CHISARI E, SNYDER J, et al. Next-generation sequencing supports targeted antibiotic treatment for culture negative orthopedic infections[J]. Clin Infect Dis, 2023, 76(2): 359-364. |
| [16] |
陈华, 陈品儒, 李艳阳, 靶向高通量测序鉴定非结核分枝杆菌菌种的应用价值[J]. 中国防痨杂志, 2023, 45(4): 362-366. |
| [17] |
LI S Y, TONG J, LIU Y, et al. Targeted next generation sequencing is comparable with metagenomic next generation sequencing in adults with pneumonia for pathogenic microorganism detection[J]. J Infect, 2022, 85(5): e127-e129. |
| [18] |
HILT E E, FERRIERI P. Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases[J]. Genes (Basel), 2022, 13(9): 1566. |
| [19] |
廖毓香, 朱水泉, 伍桂雄, 靶向高通量测序技术(tNGS)在下呼吸道感染病原体检测中的诊断价值[J]. 系统医学, 2024, 9(6): 81-83. |
| [20] |
张彩霞, 叶黎文, 黄春艳. 病原体靶向测序技术在疑似肺部感染患者中的应用价值分析[J]. 解放军医学杂志, 2024, 49(9): 1022-1028. |
| [21] |
SCHMID S, JOCHUM W, PADBERG B, et al. How to read a next-generation sequencing report-what oncologists need to know[J]. ESMO Open, 2022, 7(5): 100570. |
| [22] |
CHAO A, WU R C, LIN C Y, et al. Targeted next-generation sequencing for the detection of cancer-associated somatic mutations in adenomyosis[J]. J Obstet Gynaecol, 2023, 43(1): 2161352. |
| [23] |
DO J, YENWONGFAI L N, DO S I, et al. Next generation sequencing analysis of fibrin-associated large b-cell lymphoma reveals pathogenic single nucleotide variants[J]. Anticancer Res, 2024, 44(2): 665-672. |
| [24] |
KATTOOR J J, NIKOLAI E, QUROLLO B, et al. Targeted next-generation sequencing for comprehensive testing for selected vector-borne pathogens in canines[J]. Pathogens, 2022, 11(9): 964. |
河北省医学科学研究课题计划项目(20231631)
/
| 〈 |
|
〉 |