人工智能在急诊医学中的应用进展
杨烽涛 , 马连韬 , 余剑波 , 石芳娥 , 王亚沙 , 董桂英 , 朱继红
中国现代医学杂志 ›› 2025, Vol. 35 ›› Issue (14) : 38 -43.
人工智能在急诊医学中的应用进展
Advances in the application of artificial intelligence in emergency medicine
As a medical specialty dedicated to addressing acute diseases and trauma, emergency medicine faces challenges such as the complexity of medical conditions and the high demand for diagnostic efficiency. In recent years, the rapid advancement of artificial intelligence (AI) technology has provided critical support for emergency diagnosis and treatment. Through deep learning models and big data analysis, AI can significantly enhance diagnostic accuracy, improve patient triage processes, optimize resource allocation, and facilitate the development of personalized treatment strategies. However, the clinical application of AI still faces numerous challenges. Future research should focus on establishing cross-institutional data-sharing mechanisms, optimizing models, and ensuring safety validation, while exploring the comprehensive application of AI-based decision support systems in emergency care settings.
急诊医学 / 人工智能 / 疾病诊断 / 危险分层 / 临床支持
emergency medicine / artificial intelligence / disease diagnosis / risk stratification / clinical support
| [1] |
刘善武, 于辉, 李进. 人工智能技术在互联网信息服务安全评估中的应用研究[J]. 信息与电脑, 2021, 33(21): 160-162. |
| [2] |
JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. |
| [3] |
KIRUBARAJAN A, TAHER A, KHAN S, et al. Artificial intelligence in emergency medicine: a scoping review[J]. J Am Coll Emerg Physicians Open, 2020, 1(6): 1691-1702. |
| [4] |
王瑞杰, 李权, 吕传柱. 人工智能在急诊领域的应用进展[J]. 中华医学信息导报, 2023, 38(8): 12. |
| [5] |
王昕玥, 渠鸿竹, 方向东. 组学大数据和医学人工智能[J]. 遗传, 2021, 43(10): 930-937. |
| [6] |
孙岳川, 高键东, 吴及. 临床医学人工智能: 典型应用与挑战[J]. 中国卒中杂志, 2021, 16(7): 643-648. |
| [7] |
TOMAŠEV N, GLOROT X, RAE J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767): 116-119. |
| [8] |
SHIMABUKURO D W, BARTON C W, FELDMAN M D, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial[J]. BMJ Open Respir Res, 2017, 4(1): e000234. |
| [9] |
KANG D Y, CHO K J, KWON O, et al. Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services[J]. Scand J Trauma Resusc Emerg Med, 2020, 28(1): 17. |
| [10] |
VINCENT J L, MORENO R, TAKALA J, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. on behalf of the working group on sepsis-related problems of the European society of Intensive Care Medicine[J]. Intensive Care Med, 1996, 22(7): 707-710. |
| [11] |
BARTON C, CHETTIPALLY U, ZHOU Y F, et al. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs[J]. Comput Biol Med, 2019, 109: 79-84. |
| [12] |
LI J Z, GONG M, JOSHI Y, et al. Machine learning prediction model for acute renal failure after acute aortic syndrome surgery[J]. Front Med (Lausanne), 2021, 8: 728521. |
| [13] |
SINGHAL L, GARG Y, YANG P, et al. eARDS: a multi-center validation of an interpretable machine learning algorithm of early onset acute respiratory distress syndrome (ARDS) among critically ill adults with COVID-19[J]. PLoS One, 2021, 16(9): e0257056. |
| [14] |
LE S, PELLEGRINI E, GREEN-SAXENA A, et al. Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS)[J]. J Crit Care, 2020, 60: 96-102. |
| [15] |
STRODTHOFF N, STRODTHOFF C. Detecting and interpreting myocardial infarction using fully convolutional neural networks[J]. Physiol Meas, 2019, 40(1): 015001. |
| [16] |
HAN L, ASKARI M, ALTMAN R B, et al. Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis[J]. Circ Cardiovasc Qual Outcomes, 2019, 12(10): e005595. |
| [17] |
陈斌, 胡炜, 刘东丽. 基于机器学习的重症急性胰腺炎的辅助诊断模型[J]. 中国数字医学, 2024, 19(3): 26-30. |
| [18] |
张雅琼, 栗凤霞. 人工智能技术在消化内镜领域的研究现状[J]. 中国现代医学杂志, 2020, 30(8): 62-66. |
| [19] |
窦维佳, 康林, 刘喜, 人工智能技术在早期胃癌内镜诊断中的应用进展[J]. 中国现代医学杂志, 2023, 33(6): 37-42. |
| [20] |
SWEENEY T E, AZAD T D, DONATO M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters[J]. Crit Care Med, 2018, 46(6): 915-925. |
| [21] |
ANTCLIFFE D B, BURNHAM K L, AL-BEIDH F, et al. Transcriptomic signatures in sepsis and a differential response to steroids. from the VANISH randomized trial[J]. Am J Respir Crit Care Med, 2019, 199(8): 980-986. |
| [22] |
ZHANG Z H, ZHANG G S, GOYAL H, et al. Identification of subclasses of sepsis that showed different clinical outcomes and responses to amount of fluid resuscitation: a latent profile analysis[J]. Crit Care, 2018, 22(1): 347. |
| [23] |
CALFEE C S, DELUCCHI K, PARSONS P E, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2(8): 611-620. |
| [24] |
CALFEE C S, DELUCCHI K L, SINHA P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(9): 691-698. |
| [25] |
BHATTARAM S, SHINDE V S, KHUMUJAM P P. ChatGPT: the next-gen tool for triaging?[J]. Am J Emerg Med, 2023, 69: 215-217. |
| [26] |
GAO Z Z, QI X, ZHANG X T, et al. Developing and validating an emergency triage model using machine learning algorithms with medical big data[J]. Risk Manag Healthc Policy, 2022, 15: 1545-1551. |
| [27] |
HAIM G B, BRAUN A, EDEN H, et al. AI in the ED: assessing the efficacy of GPT models vs. physicians in medical score calculation[J]. Am J Emerg Med, 2024, 79: 161-166. |
| [28] |
ALAKA S A, MENON B K, BROBBEY A, et al. Functional outcome prediction in ischemic stroke: a comparison of machine learning algorithms and regression models[J]. Front Neurol, 2020, 11: 889. |
| [29] |
SUNG S M, KANG Y J, CHO H J, et al. Prediction of early neurological deterioration in acute minor ischemic stroke by machine learning algorithms[J]. Clin Neurol Neurosurg, 2020, 195: 105892. |
| [30] |
HOU N Z, LI M Z, HE L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost[J]. J Transl Med, 2020, 18(1): 462. |
| [31] |
WANG Z Y, LAN Y S, XU Z D, et al. Comparison of mortality predictive models of sepsis patients based on machine learning[J]. Chin Med Sci J, 2022, 37(3): 201-209. |
| [32] |
邹文卿, 沈昊创. ChatGPT在医疗领域中的应用、伦理风险与治理研究[J]. 医学与哲学, 2023, 44(21): 7-11. |
| [33] |
OKADA Y, NING Y L, ONG M E H. Explainable artificial intelligence in emergency medicine: an overview[J]. Clin Exp Emerg Med, 2023, 10(4): 354-362. |
| [34] |
VEARRIER L, DERSE A R, BASFORD J B, et al. Artificial intelligence in emergency medicine: benefits, risks, and recommendations[J]. J Emerg Med, 2022, 62(4): 492-499. |
| [35] |
何洋, 杨杰, 陈棚棚, 人工智能在急重症诊疗方面的优势及未来的研究方向[J]. 中国急救医学, 2023, 43(10): 757-759. |
| [36] |
李杨, 杜雷雷, 许飞, 大数据与人工智能在医学领域的应用进展[J]. 协和医学杂志, 2023, 14(1): 184-189. |
国家自然科学基金(82241052)
/
| 〈 |
|
〉 |