耦合多特征多时相的普洱市优势树种分类研究

肖庆琳, 张加龙, 曹军, 刘灵, 王飞平, 殷唐燕, 杨坤

森林工程 ›› 2024, Vol. 40 ›› Issue (02) : 117 -126.

PDF (2673KB)
森林工程 ›› 2024, Vol. 40 ›› Issue (02) : 117 -126.

耦合多特征多时相的普洱市优势树种分类研究

作者信息 +

Author information +
文章历史 +
PDF (2736K)

摘要

利用遥感分类的方法可以快速识别普洱市的优势树种,进一步提升树种覆盖分类的精度,为该区域内森林监测提供参考依据。基于全球尺度遥感云计算平台(Google Earth Engine, GEE),融合经过大气、地形校正后的多时相Sentinel-2数据,识别树种的光谱信息,提取纹理、物候和地形等特征因子,并进行不同的组合,采用分层分类和随机森林(Random forest, RF)的方法对普洱市思茅松、茶树、栎类、橡胶和尾叶桉5个优势树种进行分类。结果表明,多时相影像结合多特征进行分类时地形特征在森林与非森林、针阔林、优势树种上的分类精度高于引入物候和纹理特征。森林与非森林分类的总体精度为99.5%(Kappa=0.98),用户精度和制图精度的调和平均值(F_1)为98.48%;针叶林与阔叶林分类总体精度为98.7%(Kappa=0.96),F_1为97.64%;优势树种分类总体精度为85.83%(Kappa=0.80),F_1为85.19%;优势树种主要分布于海拔1 300~1 700 m的西坡、西南坡和南坡方向的陡坡上。在多时相影像中提取多特征进行分类能够有效提高普洱市优势树种分类精度,可较为准确地提供大区域、高精度的森林覆盖分类图。

关键词

GEE / 多特征 / 多时相 / 树种分类 / 随机森林

Key words

引用本文

引用格式 ▾
肖庆琳, 张加龙, 曹军, 刘灵, 王飞平, 殷唐燕, 杨坤 耦合多特征多时相的普洱市优势树种分类研究[J]. 森林工程, 2024, 40(02): 117-126 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (2673KB)

18

访问

0

被引

详细

导航
相关文章

AI思维导图

/