PDF (2739K)
摘要
激光雷达(Light detection and ranging, LiDAR)作为一种主动遥感技术,能够通过发射激光能量并接收返回信息的方式获取森林空间结构信息,然而,单独使用时存在扫描盲区,无法获取完整的森林树木三维点云。为此,提出融合无人机和地基LiDAR点云估测单木结构参数的方法,采用地面特征和树木位置关系的配准方法实现点云融合,并在融合点云数据的基础上提出一种改进的K均值层次聚类分割算法完成单木分割,然后根据基于分割后的单木点云使用轴对齐包围盒算法以及最小二乘拟合圆法分别提取单木树高和胸径,最后通过生物量异速生长方程估测单木生物量。研究结果表明,蒙古栎样地的树高、胸径和单木生物量的决定系数(R~2)分别为0.84、0.93和0.91,单木结构参数的均方根误差(RMSE)分别为0.75 m、0.96 cm和26.31 kg/株;樟子松样地的树高、胸径和单木生物量的R~2分别为0.92、0.96和0.95,相应的均方根误差分别为0.43 m、1.06 cm和26.12 kg/株。融合无人机和地基LiDAR点云为快速完整地获取林木构型信息提供可靠的数据基础,为联合多源激光雷达技术深入林业应用提供有力的技术支撑。
关键词
无人机LiDAR
/
地基LiDAR
/
点云融合
/
单木分割
/
单木结构参数
Key words
融合无人机和地基激光雷达点云数据估测单木结构参数[J].
森林工程, 2024, 40(01): 142-151 DOI: