College of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150000,China
Show less
文章历史+
Received
Accepted
Published
2024-03-11
Issue Date
2024-11-15
PDF (1363K)
摘要
为系统分析人类活动对交通环境的影响,科学评估智慧交通发展水平,并准确识别城市交通运输行业在智慧化转型过程中的影响因素,基于DPSIR(drivers pressures state impact response)模型构建智慧交通发展评价指标体系,评估北京市2013—2022年智慧交通发展水平的动态变化,识别影响城市智慧交通发展的限制性因素。研究结果显示,1)2013—2022年北京市智慧交通综合发展水平持续上升,呈现整体改善趋势;2)北京市智慧交通驱动力和响应子系统的发展程度整体呈下降趋势,压力、状态和影响子系统的发展程度整体呈上升趋势;3)2013—2018年,影响北京市智慧交通发展的主要因素为路口电子警察安装数、高峰时段市民平均出行时耗等,2019—2022年,交通运输网络建设密度、人口密度、汽车社会公共停车泊位数成为主要因素。为此,提出加强智慧交通自身造血能力、提升供给侧水平以及推动城市交通向智能低碳转型等建议,以针对北京市智慧交通治理的短板因素进行改进。
Abstract
To systematically analyze the impact of human activities on the transportation environment, scientifically assess the level of smart transportation development, and accurately identify the influencing factors of the urban transportation industry in the process of smart transformation, we construct a smart transportation development evaluation index system based on the DPSIR(drivers pressures state impact response) model, evaluate the dynamic changes in the level of smart transportation development in Beijing from 2013—2022, and identify the limiting factors affecting the development of urban smart transportation. The results of the study show that, 1) the comprehensive development level of smart transportation in Beijing continues to rise from 2013—2022, showing an overall improvement trend; 2) the development level of the driving force and response subsystems of smart transportation in Beijing shows an overall decreasing trend, and the development level of the pressure, state and influence subsystems shows an overall increasing trend; 3) in 2013—2018, the main factors affecting the development of smart transportation in Beijing are the number of electronic police installations at intersections and the average travel time consumption of citizens during peak hours, in 2019—2022, the density of transportation network construction, population density, and the number of public parking spaces for automobile societies become the main factors. Therefore, suggestions are made to strengthen the smart transportation's own hematopoietic ability, improve the supply side level, and promote the transformation of urban transportation to smart and low-carbon, in order to make improvements for the short-board factors of Beijing's smart transportation governance.
综上所述,现有研究主要集中于对智慧交通整体水平的评估,未充分考虑到不同时点智慧交通发展的动态变化,缺乏对智慧交通动态发展水平的准确测度;智慧交通评价指标未充分考虑人类活动对交通环境的影响,缺乏从系统的角度分析人类活动与智慧交通系统相互作用的关系。因此,本研究基于DPSIR(drivers pressures state impact response)模型构建城市智慧交通综合评价体系,并结合逼近理想解排序法(technique for order preferenceby similarity to ideal solution,TOPSIS)模型和障碍度模型,对城市智慧交通发展水平进行测算以及障碍因素识别。从而揭示智慧交通发展变化的规律与趋势,基于此提出智慧交通高质量发展的对策建议,为智慧交通发展提供重要参考[15]。
LIUY R, YAOD, LIJ P.The connotation,development goals and construction ideas of China's intelligent transportation[J].Modern Management Science,2018(12):118-120.
[5]
史盼.西安市智慧交通建设评价研究[D].西安:长安大学,2020.
[6]
SHIP.Research on evaluation of intelligent transportation construction in Xi'an[D].Xi'an:Chang'an University,2020.
[7]
WAQARA, ALSHEHRIA H, ALANAZIF,et al.Evaluation of challenges to the adoption of intelligent transportation system for urban smart mobility[J].Research in Transportation Business & Management,2023,51:101060.
[8]
岳萍.智能交通在城市道路中的运用[J].建筑科学,2022,38(9):190.
[9]
YUEP.The application of intelligent transportation in urban roads[J].Building Science,2022,38(9):190.
[10]
陆化普.智能交通系统主要技术的发展[J].科技导报,2019,37(6):27-35.
[11]
LUH P.Progress of intelligent transportation system key technologies[J].Science & Technology Review,2019,37(6):27-35.
[12]
黄金.ASD理论视角下淮安市推行智慧交通建设的动力研究[D].上海:华东政法大学,2021.
[13]
HUANGJ.Study on the motivation of Huai'an city to promote smart transportation construction from the perspective of ASD theory[D].Shanghai: East China University of Political Science and Law,2021.
[14]
HAOL, CHENGY X, LIUD J,et al.Spatial-temporal evolution analysis of the impact of smart transportation policies on urban carbon emissions[J].Sustainable Cities and Society,2024,101(4):105177.
[15]
DUANR.A comparative study on ITS(intelligent transport system) standardization policies in the U.S.and Europe[J].Heliyon,2023,9(1):e21310.
[16]
DEVECIM, MISHRAA R, RANIP,et al.Evaluation of intelligent transportation system implementation alternatives in metaverse using a Fermatean fuzzy distance measure-based OCRA model[J].Information Sciences,2024,657:120008.
[17]
陈池.区域智慧交通发展水平评价研究——以长三角地区为例[D].南京:南京大学,2020.
[18]
CHENC.Research on evaluation of development level of regional smart transportation-Take the Yangtze River delta area as an example[D].Nanjing:Nanjing University,2020.
JINL, WANGY Y, FUH,et al.Perception level evaluation of airport land-side intelligent traffic system based on fuzzy analytic hierarchy process[J].Science Technology and Engineering,2022,22(8):3365-3372.
ZHENGJ Z, ZHANGJ N.Research on the post-evaluation of intelligent expressway improvement and renovation project based on AHP-fuzzy comprehensive evaluation[J].Construction Economy,2023,44(S1):214-219.
LIUS S, WUW J, WANGZ Q.Calculation on green development level of Urumqi in Xinjiang,China based on DPSIR-TOPSIS model and its influencing factors[J].Journal of Earth Sciences and Environment,2023,45(4):857-868.
ZHAOX, HEG Z.Research progress of driving force-pressure-state-impact-response analysis framework based on CiteSpace[J].Acta Ecologica Sinica,2021,41(16):6692-6705.
ZHOUY X, WANGJ W, GAOJ,et al.Evaluation and obstacle factor diagnoses of low carbon transport development based on DPSIR:A case study of Beijing[J].Ecological Economy,2020,36(4):13-18.
DUS D, GUANY N, LIX,et al.Water quality evaluation with improved comprehensive pollution index based on entropy weight method:A case study of Baiyun lake[J].Acta Scientiae Circumstantiae,2022,42(1):205-212.
FUC Y, LAIZ H, GUOX.Evaluation of regional resource and environment carrying capacity based on the entropy-weight TOPSIS model and the obstacle factors diagnosis[J].Ecological Economy,2020,36(1):198-204.