木材生物彩绘研究与展望

何海珊 ,  邱坚 ,  黄荣文 ,  陈伟红

森林工程 ›› 2025, Vol. 41 ›› Issue (02) : 217 -224.

PDF (1482KB)
森林工程 ›› 2025, Vol. 41 ›› Issue (02) : 217 -224. DOI: 10.7525/j.issn.1006-8023.2025.02.001
前沿综述

木材生物彩绘研究与展望

作者信息 +

Research and Prospect of Wood Bio-painting

Author information +
文章历史 +
PDF (1516K)

摘要

木材生物彩绘指利用真菌、细菌使木材变色,也称为花斑木。回顾花斑木历史、研究现状与难题并提出展望。花斑木的应用可追溯到500多年前的意大利,当时被广泛应用于镶嵌装饰工艺中。当前,花斑木的研究主要集中在菌纹木和软腐菌色素的研究与利用,由于微生物色素具有可再生、耐久等优点,为提高人工林木材的综合利用率和附加值提供新的途径,也有助于减少合成染料的使用。而心材型(细菌型)花斑木的研究难度较大,需要更多的科学探索和技术突破。目前利用真菌培育花斑木存在菌种保存与衰退、过程污染控制和培育条件控制等难题,而色素提取及媒染则需关注溶剂毒性、色牢度等问题。

Abstract

Wood bio-painting refers to using fungi and bacteria to change the color of wood, also called spalted wood. This article reviews its history, current status and challenges, and proposes prospects. The application of spalted wood can be traced back to Italy over 500 years ago, when it was widely used in inlay decoration techinques. Currently, research on spalted wood focuses on the study and utilization of zone line wood and pigments produced by soft rot fungi. The renewable and durable nature of microbial pigments offers a new approach to enhancing the comprehensive utilization rate and added value of plantation timber, and may help reduce the use of synthetic dyes. However, research of heartwood type(bacterial type) spalted wood poses greater challenges, requiring more scientific exploration and technological breakthroughs. When cultivating spalted wood through fungal inoculation, there are difficulties such as fungal strains preservation and decline, process pollution control, and cultivation condition. Additionally, pigment extraction and mordanting require attention to issues such as solvent toxicity and color fastness.

Graphical abstract

关键词

木材生物彩绘 / 花斑木 / 菌纹木 / 蓝变菌 / 软腐菌 / 真菌色素

Key words

Wood bio-painting / spalted wood / zone lines / blue stain / soft rot / fungi pigments

引用本文

引用格式 ▾
何海珊,邱坚,黄荣文,陈伟红. 木材生物彩绘研究与展望[J]. 森林工程, 2025, 41(02): 217-224 DOI:10.7525/j.issn.1006-8023.2025.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

1 概念与应用历史

木材生物彩绘即花斑木,“花斑”由“Spalting”翻译而来1,原指真菌所致木材变色,被形象地描述为“菌作媒,木生花”2,2021年邱坚等3提出心材型(细菌型)花斑木。

真菌所致木材变色主要包括白腐(white rot)、菌纹(zone lines)、色变(stains)4,其中,菌纹初译为“菌纹线”“带线花纹”5-8,后译为菌纹9,形成菌纹的木材称菌纹木。在传统木材加工中白腐、色变等属于木材缺陷,但也有特殊情况,如在14世纪的意大利用不同色彩木材制作镶嵌细木工作品,其中绿杯盘菌属(Chlorociboria)使木材染成蓝绿色、在欧洲流行牛舌菌(Fistulina hepatica)使橡木染色成棕色,而长喙壳类真菌的蓝灰色色变和白腐菌的菌纹木用量较小4,Robinson等10出版的书籍中收录了大量15世纪至今的花斑木作品,包括箱、柜、桌、门、笔、灯、碗、罐、壁画、贴面和浮雕等。

19世纪中后期,合成染料工业迅速发展并成为主流,但其毒性、污染和资源消耗等问题逐渐凸显,人们开始关注环境友好型天然染料11,其中微生物染料在制药、食品和纺织等的应用越来越广泛12-13。21世纪初,Robinson等14- 15开始花斑木研究,2010年以来,国内相继开展相关研究6-716-19。近几年,邱坚等3发现柿属心材中深色“菌纹”丰富却无菌丝和腐朽迹象,提出了心材型(细菌型)花斑木概念。

2 主要类型及特点

2.1 菌纹

常见菌纹真菌及其特征见表1。菌纹真菌形成黑、橙和棕等或细线或粗线,构成独特花纹,同时木材质量损失低、强度变化小、无明显腐朽、细胞壁降解轻微,能满足木材的加工要求20- 21,Vega等22研究认为较具价值。自然中可见多彩菌纹,在野外采集的一块木材上可以同时出现棕红色、深灰色的菌纹,如图1所示,但将分离所得真菌回接木材所得菌纹常为暗色,其主要成分是真菌分泌的黑色素,说明实验室与野外的条件差异影响花斑形成。

2.2 白腐

木材白腐后呈口袋状、片状、带状、蜂窝状、海绵状浅色区域,这种情况是木质素被大量降解而纤维素裸露的结果,有的在浅色区域边缘出现少量菌纹,如图2所示。如密环菌(Armillaria mellea)、多年拟层孔菌(Fomitopsis annosus)和火木层孔菌(Phellinus igniarius)白腐区域夹杂黑色线纹28。白腐木材呈现浅色区域时,木质素已大量损失,木材强度和密度严重下降,影响木材使用,因此白腐菌常与菌纹真菌组合使用获得菌纹23

2.3 变色菌的色变

变色菌引起的木材变色有青、褐、黄、绿、红、灰和黑等大面积连续变色,但蓝变最常见,包括可可球色二孢(Lasiodiplodia theobromae29、长喙壳状属(Ophiostoma30、长喙壳属(Ceratocystis31和华山松蓝变真菌(Leptographium31等,蓝变颜色因菌种、树种以及环境条件而异,但主要为可可球色二孢和长喙壳类造成的蓝灰色染色,虽少有木材力学性能影响之弊,但蓝变菌菌丝沿木射线和轴向薄壁细胞的纹孔快速蔓延,横切面上常呈楔形或三角形局部变色,如图3所示,色调偏灰暗且染色限于局部,被视为木材缺陷,松木和橡胶木等一般在砍伐后立刻进行防蓝变处理32-34。红色染色菌(Arthrographis cuboidea)是一种特殊红色变色菌,国内未发现分布,可致松、柏、栎和桦等产生红色斑纹,不仅染色边材,还染色心材,其色素属于醌类化合物1535-36。暗孢节菱孢菌(Arthrinium phaeospermum)是竹材病原菌,可将泡桐染粉红色,将杉木染红色16,显色成分主要是黄酮和醌类化合物37

2.4 软腐菌的染色

在木材内着色的软腐菌少有,且在实验室多难以维持分泌色素的能力38,但软腐菌的色素常为萘醌类,比红曲霉或青霉菌的水溶性色素稳定性好、色牢度高39-42

如绿杯盘菌属(Chlorociboria)致木材局部片状蓝绿色43-44,历经500多年色彩仍然稳定45,其形成的晶体状蓝绿色色素盘菌木素(xylindein)是一种醌类化合物,不仅可染色织物,还具特别的光电性质,他具有π-共轭核心结构,并显示出由于氢键和分子π-π堆积而导致的聚集形成,使得在非晶态xylindein薄膜中电子传输的迁移率高达-0.4 cm2/Vs,已观察到的半导体特性使其成为可持续有机电子等绿色技术的候选材料,由于目前没有合成该色素的方法,只能通过生长缓慢的绿杯盘菌属真菌获得,产量低且纯度不高,不同物种和菌株之间存在导电性差异,因此较大地阻碍了相关研究和应用46-48。对于利用xylindein,研究者更倾向于提取色素后媒染木材或织物4049,由于菌种、培养基和培养时间等条件均影响色素形成4850,提高色素产量和纯度成为热点3850

节格孢属(Scytalidium)多数倾向于软腐菌,牛樟芝共生菌(S. cuboideum)使木材染红色或粉红色51-52,其特殊的红色色素(draconin red)是非水溶性晶体53-54,有较好的抗紫外线55、耐久性和色牢度56S.ganodermophthorum和木生柱顶孢(S.lignicola)产生黄色色素57,其中S.ganodermophthorum产生的色素是非晶体不明化合物,在不同木材和营养条件下色素形成差异大57-59

2.5 心材型(细菌型)花斑木

邱坚等3关注到市场上同一批柿木中仅少数在心材中形成丰富的深色线纹,其线纹特征与真菌形成的菌纹相似,但经解剖观察并无菌丝和腐朽迹象,深色处为深色树脂状物质,进一步研究发现深色处次生代谢产物量显著增加,其中4-吡哆醇大量增加,4-吡哆醇是生物体受细菌侵染的次生代谢产物,说明深色物质积累可能与树木受细菌刺激有关60。如深入研究心材型花斑木形成,需在活立木条件下长期试验观察,还会受树势、环境和菌种培育条件等多种因素影响,研究难度较大。

3 真菌培育花斑木的条件

3.1 树种与木材部位

培育花斑木需要选择材种和木材部位,心材和耐腐性强的材种都不宜选择,应根据菌种对木材的偏好选择材种。阔叶材边材更易形成花斑,如槭木、桦木、山毛榉14和大果紫檀等显心材树种的边材常见花斑,而桉树、番龙眼等边材少、耐腐性强的树种则少见花斑61。菌种对树种的偏好,如多形炭角菌(X. polymorpha)在山杨和糖槭上形成菌纹量比黄桦和美洲椴多62,又如云芝(T. versicolor)偏好美洲榆、糖槭和欧洲七叶树,红色染色菌(Arthrographis cuboidea)偏好臭椿63,绿杯盘菌属(Chlorociboria sp.)对杨木染色效果比糖槭和桦木好,且不染色椴木44

3.2 环境条件

花斑真菌生长发育并形成花斑,需要营养、温度、水分、pH和氧气等环境条件。

真菌侵染初期,立即需要营养。在侵染初期添加葡萄糖有利于形成花斑,如间座壳属(Diaporthe spp.)在添加葡萄糖的白木香上更易形成菌纹64。多数花斑真菌适宜的温度范围为10~40 ℃。把接种Diaporthe spp.的白木香木段置于昆明冬季西晒试验室内室温60 d,环境温度6.0~24.7 ℃、湿度76.1%~96.4%,可获得白木香花斑木64

木材含水率对花斑木形成的影响因材种和菌种而异,一般为20%~60%。糖槭含水率为18%~35%时,山毛榉花斑面积占比为26%~32%,T.versicolor的花斑最多;糖槭为29%~33%,X.polymorpha的花斑最多;糖槭和山毛榉分别为22%~28%和34%~38%,粗毛黄褐孔菌(Inonotus hispilus)和宽鳞多孔菌(Polyporus squamosus)形成的花斑最多;山毛榉为26%~41%,糖槭为59%~96%,木蹄层孔菌(Fomes formentarius)和冬生多孔菌(P.brumalis)的花斑最多65。山毛榉(Fagus longipetiolata)为52%~65%,谢瓦散囊菌(Diaporthe sp.)J9-1的花斑最多5

pH和培育介质对花斑形成略有影响,但由于木材本身偏酸性,因此一般无须特意调节木材pH,而良好的培育介质可以起到遮挡光线、固定木料、保水透气的作用。以磷酸钾缓冲液调节木材pH,缓冲液pH为4.5时,T.versicolor在糖槭和山毛榉上形成菌纹最多,而缓冲液pH为5时,X.polymorpha在山毛榉上形成菌纹最多66。在糖槭上分别接种5种真菌,在珍珠岩基质中花斑多、重量损失小、染色对比度好15

3.3 刺激色素形成的化学试剂

有的真菌在亚致死剂量杀菌剂的作用下可分泌更多色素染色木材。Cu2+对真菌有毒,高浓度Cu2+溶液抑制真菌生长和色素分泌,低浓度Cu2+溶液可刺激真菌产生色素甚至改变菌纹颜色。 5 mmol/L的Cu2+(质量浓度1.25 kg/m3的5H2O∙CuSO4溶液)在PDA培养基上可抑制可可球二孢菌生长和色素分泌,以0.1 mol/L的Cu2+(质量浓度 25 kg/m3的5H2O∙CuSO4溶液)处理杨木单板在10 d内也有抑制作用1767。对可可球色二孢而言,质量浓度为1.25 kg/m3的5H2O∙CuSO4已具有较大毒害作用。0.01、0.001 kg/m3的5H2O∙CuSO4处理糖槭 并以珍珠岩为介质时X. polymorpha的菌纹量多、 染色颜色更深,以土壤为介质时0.1、0.01、0.001、0.000 01 kg/m3的5H2O∙CuSO4描出的“S”形边缘处菌纹和染色随质量浓度升高而增多;真菌组合X.polymorpha/Arthrographis cuboidea在0.01 kg/m3的5H2O∙CuSO4处理、珍珠岩为介质的糖槭上的黑色菌纹减少,但出现红色菌纹和内部红色染色,而0.1、0.01、0.001、0.000 01 kg/m3的5H2O∙CuSO4溶液无法刺激蓝变菌(Ceratocystis virescens)及其与多种菌种的组合形成更多花斑68-69

3.4 真菌组合接种形成菌纹

真菌组合有助于形成多样的花斑,并降低白腐。如Diaporthe sp. ZXH63-4、Phomopsis sp.ZXH28-2、Beltrania sp. ZXH62-2及Chlorociboria aeruginascens两两组合接种形成了数量更多、类型更丰富的花斑5。软腐菌S.cuboideum与白腐菌T.versicolorX.polymorpha组合接种时菌纹增多但红色染色减少52

3.5 菌种保存与形成花斑能力退化

一些病原真菌在试验室长期储存后致病力降低,菌纹真菌也存在长期存储导致的花斑能力退化的现象。Robinson等62连续2 a每年从同一糖槭树桩上的X.polymorpha子实体上分离纯化得到3株菌株,在2%麦芽琼脂培养基中室温保存,每3个月换培养基,接种到4种木材上培育,保存时间最短的菌株在所有木材内部菌纹显著最多,在糖槭表面的菌纹显著增多。花斑菌株能力退化的研究较少但对花斑木的利用影响较大。

4 总结与展望

随着木材科学与微生物技术的交叉融合,木材生物彩绘利用微生物对木材进行材色和花纹改良,有助于提高人工林木材综合利用率和附加值,减少使用对环境有害的合成染料,花斑木作为环保且富有艺术价值的木材类型,正逐步展现出在多个领域的潜力。

菌纹木独特的花纹与色彩,源自微生物在木材上自然生长与代谢,赋予了木材独特美学特质,且真菌黑色素耐光性、稳定性俱佳。通过微生物接种技术与培育条件,有望开发出更多样化、个性化的花斑木纹理,满足市场对高端定制家具、艺术品及建筑装饰材料的多元化需求。

变色菌和软腐菌形成的耐光、耐久和色牢度高的晶体状xylindein和龙血红(draconin red)色素,不仅可应用于木材染色,在纺织物染色和光电材料领域也具有应用前景。由于xylindein尚不能人工合成,寻找和探索高效菌种和生长条件,减少干扰代谢物的产生,并开发新的提取方法,将有助于开发可持续性的有机光电产品。

心材型花斑木可能是树木受细菌刺激后形成的,其研究还有较多难点。关于花斑木的研究与利用的问题及研究方向的思考还有以下几点展望。

1)目前试验室接种真菌培育花斑木,木材需要无菌处理并控制到一定含水率,在后续培育中需要密闭环境以维持相对无菌条件和湿度,步骤繁杂且条件控制不易。从生态系统的角度出发,真菌以木材为营养,在利用木材之前,利用真菌消耗木材小分子营养后再干燥木材有助于防止木材变色或腐朽,形成色素使木材增加色彩或趣味,因此可以将木材生物彩绘的过程提前到木材干燥之前,即在砍伐前或砍伐之时即接种菌类,培育优势真菌与其他微生物相互作用,或可以减少加工程序和获得更具吸引力的花斑木。

2)真菌色素提取与媒染存在媒染溶剂毒性、色牢度等问题,应进一步探索生物色素的高效提取与纯化技术,减少化学试剂的使用,降低生产成本,实现生物色素的绿色化、规模化生产。有的真菌可能对人体或环境有害,如大量的真菌孢子可能会引起人的呼吸道疾病,而真菌代谢产物也可能含有有毒有害物质,未来应加强对生物色素的安全性评估,建立严格的质量控制体系与行业标准,确保生物色素产品的安全性与可靠性。

3)菌株在试验室条件下保存可发生色素形成能力的退化,可以通过改良保存菌株方法或筛选稳定菌株以维持菌株形成色素的能力。

参考文献

[1]

郭梦麟,蓝浩繁,邱坚.木材腐朽与维护[M].北京:中国计量出版社,2010.

[2]

GUO M LLAN H FQIU J.Wood decay and prevention[M].Beijing:China Metrology Publishing House,2010.

[3]

邱坚,何海珊.菌作媒木生花花斑木提高木材综合利用率[J].商品与质量201312:56.

[4]

QIU JHE H S.Using fungi as mediator to grow spalted wood to improve the comprehensive utilization rate of wood[J].Commodity and Quality201312:56.

[5]

邱坚,李智,贾慧文,花斑木形成机制的研究动态[J].西南林业大学学报(自然科学)202141(3):1-8

[6]

QIU JLI ZJIA H W,et al.New direction in formation mechanism of spalted wood[J].Journal of Southwest Forestry University(Natural Sciences)202141(3):1-8.

[7]

ROBINSON S C.Cultures of spalting[J].Encyclopedia20222(3):1395-1407.

[8]

何海珊.花斑木形成机理的研究[D].昆明:西南林业大学,2015.

[9]

HE H S.Study on formation mechanism of spalted wood[D].Kunming:Southwest Forestry University,2015.

[10]

何海珊,伍建榕,邱坚,花斑木菌种筛选[J].林业科学201450(5):118-122.

[11]

HE H SWU J RQIU J,et al.Screening fungi for wood spalting[J].Scientia Silvae Sinicae201450(5):118-122.

[12]

甘昌涛.花斑木制备与形成机理的研究[D].昆明:西南林业大学,2013.

[13]

GAN C T.Study on preparation and formation mechanism of spalted wood[D].Kunming:Southwest Forestry University,2013.

[14]

何海珊,邱坚,甘昌涛.花斑木研究现状及展望[J].西南林业大学学报(自然科学)201333(6):94-98.

[15]

HE H SQIU JGAN C T.Research status and prospect on spalted wood[J].Journal of Southwest Forestry University (Natural Sciences)201333(6):94-98.

[16]

邱坚,何海珊,甘昌涛.花斑木科学与艺术[M].北京:化学工业出版社,2023.

[17]

QIU JHE H SGAN C T.The Science and art of spalted wood[M].Beijing:Chemical Industry Press,2023.

[18]

ROBINSON S CMICHAELSEN HROBINSON J C.Spalted wood—the history,science,and art of a unique material[M].New York:Schiffer Publishing Ltd,2016.

[19]

AFROZ TOMA MRAHMAN M HRAHMAN M S,et al.Fungal pigments:carotenoids,riboflavin,and polyketides with diverse applications[J].Journal of Fungi20239(4):454.

[20]

RATHER L JMIR S SGANIE S A,et al.Research progress,challenges,and perspectives in microbial pigment production for industrial applications-a review[J].Dyes and Pigments2023210:110989.

[21]

BEESON WGABRIEL KCORNELISON C.Fungi as a source of eumelanin:current understanding and prospects[J].Journal of Industrial Microbiology and Biotechnology202350(1):kuad014.

[22]

ROBINSON S CRICHTER D LLAKS P E.Colonization of sugar maple by spalting fungi[J].Forest Products Journal2007,57:(4):24-32.

[23]

ROBINSON S CRICHTER D LLAKS P E.Effects of substrate on laboratory spalting of sugar maple[J].Holzforschung200963(4):491-495.

[24]

宋太泽.木材花斑真菌筛选及色素研究[D].南宁:广西大学,2020.

[25]

SONG T Z.Screening and pigment research of wood spalted fungi[D].Nanning:Guangxi University,2020.

[26]

刘源松.基于诱导的可可球二孢菌染色杨木的研究[D].北京:北京林业大学,2021.

[27]

LIU Y S.Study on poplar dyeing by Lasiodiploida theobromae based on induction[D].Beijing:Beijing Forestry University,2021.

[28]

赵博识.可可球二孢调色橡胶木的制备及性能研究[D].北京:北京林业大学,2020.

[29]

ZHAO B S.Study on preparation and performance of Lasiodiploida theobromae dyed with rubber wood[D].Beijing:Beijing Forestry University,2020.

[30]

王皓炜.灰黄青霉/绿色木霉协同染色毛竹材的研究[D].北京:北京林业大学,2021.

[31]

WANG H W.Research of Phyllostachys heterocycla dyed by Penicillium griseofulvum/Trichoderma viride [D].Beijing:Beijing Forestry University,2021.

[32]

甘昌涛,何海珊,李君,4种菌纹木降解程度的偏光荧光与红外光谱分析[J].西南林业大学学报(自然科学)202040(2):155-160.

[33]

GAN C THE H SLI J,et al.Degradation analysis of 4 species of spalted wood by polarized and fluorescent light and FTIR[J].Journal of Southwest Forestry University (Natural Sciences)202040(2):155-160.

[34]

何海珊,邱坚,甘昌涛,等 . Phomopsis sp.培育花斑木的失重率与顺纹抗压强度研究[C].中国工程院农业学部,中国科协科技导报社.“木(竹)材低碳加工与绿色保障”研讨会论文集.北京:中国科协科技导报社,2013

[35]

HE H SQIU JGAN C T,et al.Study on the lose of weight and compression strength parallel to grain of wood spalting by Phomopsis sp.[C].Seminar on Low CarbonProcessing and Green Guarantee of Wood (Bamboo),Agriculture Department of the Chinese Academy of Engineering.Beijing:Science and Technology Daily Press of China Association for Science and Technology,2013-11-11.

[36]

VEGA GUTIERREZ PROBINSON S C.Complexity of biodegradation patterns in spalted wood and its influence on the perception of US woodturners[J].European Journal of Wood and Wood Products202078(1):173-183.

[37]

ROBINSON S CLAKS P ERICHTER D L,et al.Evaluating loss of machinability in spalted sugar maple[J].Forest Products Journal200757(4):33-37.

[38]

HE HGAN CKUO M,et al.Producing spalted alder wood in Yunnan,China[J].Forest Products Journal201969(4):283-288.

[39]

FAN P FJIANG X LTIAN C C.The critically endangered black crested gibbon Nomascus concolor on Wuliang Mountain,Yunnan,China:the role of forest types in the species' conservation[J].Oryx200943(2):203-208.

[40]

GUTIERREZ S M VGUEVARA J F IANDERSEN C C,et al.Exploratory sampling of spalting fungi in the southern Peruvian Amazon forest[J].Challenges202011(2):32.

[41]

邱坚,何海珊,甘昌涛.花斑木科学与艺术[M].北京:化学工业出版社,2023.

[42]

QIU JHE H SGAN C T.The science and art of spalted wood[M].Beijing:Chemical Industry Press,2023.

[43]

PHILLIPS L W.The nature of spalted wood:analysis of zone line formation between six white rot fungi[D].Provo,UT:Brigham Young University,1987.

[44]

ENCINAS ODANIEL G.Decay capacity of different strains of the blue stain fungus Lasiodiplodia theobromae on various wood species[J].Material und Organismen199630(4):259-278.

[45]

BEHRENDT C J,BLANCHETTE,R A, FARRELL R L.Biological control of blue-stain fungi in wood[J].Phytopathology199585(1):92-97.

[46]

GIBBS J N.The biology of ophiostomatoid fungi causing sapstain in trees and freshly cut logs[M]//Ceratocystis and Ophiostoina Taxonomy,Ecology and Pathogenicity.St.Paul,USA:APS Press.1993:153-160.

[47]

杨苏苏,吴小龙,邱坚,生物防治木材变色研究现状及展望[J].林产工业202360(12):27-30,49.

[48]

YANG S SWU X LQIU J,et al.Current status and prospects of research on biological control of wood discoloration[J].China Forest Products Industry202360(12):27-30,49.

[49]

刘人源,曾珠亮,李权.4种防腐处理橡胶木及其炭化材的色差与耐腐性能研究[J].林产工业202360(8):7-11,24.

[50]

LIU R YZENG Z LLI Q.Study on color difference and decay resistance performance of four kinds of preservative treated rubberwood and its carbonized wood[J].China Forest Products Industry202360(8):7-11,24.

[51]

胡拉,徐慧兰,谭健晖,马尾松木材材性特点及加工利用研究[J].世界林业研究201831(1):40-45.

[52]

HU LXU H LTAN J H,et al.Research progress in wood property characteristic of Masson pine and its processing and utilization[J].World Forestry Research201831(1):40-45.

[53]

ROBINSON S CDANIELA TCOOPER P A.Feasibility of using red pigment producing fungi to stain wood for decorative applications[J].Canadian Journal of Forest Research201141(8):1722-1728.

[54]

GOLINSKI PKRICK T PBLANCHETTE R A,et al.Chemical characterization of a red pigment (5,8-Dihydroxy-2,7-Dimethoxy-1,4-Naphthalenedione) produced by Arthrographis cuboidea in pink stained wood[J].Holzforschung199549(5):407-410.

[55]

苏子华.木材花斑真菌Arthrinium phaeospermum高效产色与色素合成机制研究[D].南宁:广西大学,2022.

[56]

SU Z H.Study on the efficient pigment production and mechanism of pigment synthesis of wood spalting fungus Arthrinium phaeospermum [D].Nanning:Guangxi University,2022.

[57]

ROBINSON S CTUDOR DSNIDER H,et al.Stimulating growth and xylindein production of Chlorociboria aeruginascens in agar-based systems[J].AMB Express20122(1):15.

[58]

WEBER GCHEN HHINSCH E,et al.Pigments extracted from the wood-staining fungi Chlorociboria aeruginosaScytalidium cuboideum,and S.ganodermophthorum show potential for use as textile dyes[J].Coloration Technology2014130(6):445-452.

[59]

PALOMINO AGURTO M EVEGA GUTIERREZ S MCHEN H L,et al.Wood-rotting fungal pigments as colorant coatings on oil-based textile dyes[J].Coatings20177(10):152.

[60]

UMESH MSURESH SSANTOSH A S,et al.Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius:insights into antibacterial,antioxidant and textile dyeing properties[J].Environmental Research2023229:115973.

[61]

VEGA GUTIERREZ S MHE YCAO Y,et al.Feasibility and surface evaluation of the pigment from Scytalidium cuboideum for inkjet printing on textiles[J].Coatings20199(4):266.

[62]

RICHTER D LGLAESER J A.Wood decay by Chlorociboria aeruginascens(Nyl.) Kanouse(Helotiales,Leotiaceae) and associated basidiomycete fungi[J].International Biodeterioration & Biodegradation2015105:239-244.

[63]

ROBINSON S CLAKS P E.Wood species affects laboratory colonization rates of Chlorociboria sp.[J].International Biodeterioration & Biodegradation201064(4):305-308.

[64]

BLANCHETTE R AWILMERING A MBAUMEISTER M.The use of green-stained wood caused by the fungus Chlorociboria in Intarsia masterpieces from the 15th century[J].Holzforschung199246(3):225-232.

[65]

GIESBERS G J.(Opto)electronic properties of xylindein and organic (opto)electronic devices[D].Corvallis,USA:Oregon State University,2021.

[66]

ALMURSHIDI B HVAN COURT R CVEGA GUTIERREZ S M,et al.Preliminary examination of the toxicity of spalting fungal pigments:A comparison between extraction methods[J].Journal of Fungi 20217(2):155.

[67]

KALAČ T.Influence of heavy metals on the electrical conductivity of melanized pseudosclerotial plates in spalted wood[D].Ljubljana,The Repbulic of Slovenia:University of Ljubljana,Biotechnical Faculty,2020.

[68]

VEGA GUTIERREZ S MVEGA GUTIERREZ P TGODINEZ A,et al.Feasibility of coloring bamboo with the application of natural and extracted fungal pigments[J].Coatings20166(3):37.

[69]

VAN COURT R CGIESBERS GOSTROVERKHOVA O,et al.Optimizing xylindein from Chlorociboria spp. for (opto)electronic applications[J].Processes 20208(11):1477.

[70]

ROBINSON S C.Developing fungal pigments for "painting" vascular plants[J].Applied Microbiology & Biotechnology201293(4):1389-1394.

[71]

ROBINSON S CTUDOR DHIPSON S,et al.Methods of inoculating Acer spp.,Populus tremuloides,and Fagus grandifolia logs for commercial spalting applications[J].Journal of Wood Science201359(4):351-357.

[72]

GUTIERREZ S VROBINSON S.Microscopic analysis of pigments extracted from spalting fungi[J].Journal of Fungi20173(1):15.

[73]

GUTIERREZ S M VHAZELL K KSIMONSEN J,et al.Description of a naphthoquinonic crystal produced by the fungus Scytalidium cuboideum [J].Molecules201823(8):1905.

[74]

ROBINSON S CTUDOR DMANSOURIAN Y,et al.The effects of several commercial wood coatings on the deterioration of biological pigments in wood exposed to UV light[J].Wood Science & Technology201347(3):457-466.

[75]

HINSCH EVEGA GUTIERREZ S MVAN COURT R C,et al.Stability of the fungal pigment from Scytalidium cuboideum carried in food-grade natural oils[J].Journal of Fungi20228(3):276.

[76]

ROBINSON S CTUDOR DZHANG W R,et al.Ability of three yellow pigment producing fungi to colour wood under controlled conditions[J].International Wood Products Journal20145(2):103-107.

[77]

VAN COURT R CROGERS LROBINSON S C,et al.Wood coloration and decay capabilities of mycoparasite Scytalidium ganodermophthorum [J].Journal of Fungi20239(7):738.

[78]

GUTIERREZ P VALMUSHARDI BHUBER M,et al.Expanding the spalting palette:developing yellow,purple,and green pigments from Scytalidium ganodermophthorum [J].International Wood Products Journal202112(1):34-39.

[79]

LI ZYANG RYANG X,et al.Microscopic features and untargeted metabolomics reveal special features of the black-patterning in spalted heartwood of Diospyros spp[J].Journal of Wood Chemistry and Technology202343(5):243-252.

[80]

何海珊,邱坚,郭梦麟,易形成菌纹线树种调查[J].林业科学研究201427(6):776-780.

[81]

HE H SQIU JGUO M L,et al.Investigation of wood species prone to forming zone lines[J].Forest Research201427(6):776-780.

[82]

ROBINSON S CLAKS P E.Wood species and culture age affect zone line production of Xylaria polymorpha [J].The Open Mycology Journal20104:18-21.

[83]

ROBINSON S CTUDOR DCOOPER P A.Wood preference of spalting fungi in urban hardwood species[J].International Biodeterioration & Biodegradation201165(8):1145-1149.

[84]

何海珊,甘昌涛,郝嘉奇,2株间座壳属真菌培育白木香菌纹木的条件筛选实验[J].西南林业大学学报(自然科学)201939(6):184-188.

[85]

HE H SGAN C THAO J Q,et al.Study on Conditions of Cultivation of Spalted Wood on Aquilaria sinensis by 2 Species of Diaporthe spp .[J].Journal of Southwest Forestry University (Natural Sciences)201939(6):184-188.

[86]

TUDOR DROBINSON S CCOOPER P A.The influence of moisture content variation on fungal pigment formation in spalted wood[J].Amb Express20122(1):69.

[87]

TUDOR DROBINSON S CCOOPER P A.The influence of pH on pigment formation by lignicolous fungi[J].International Biodeterioration & Biodegradation201380(3):22-28.

[88]

LIU YCHEN YYU Z,et al.Biological control of melanin biosynthesis pathway on prolific and pleochromatic induction of Lasiodiplodia theobromae [J].Archives of Microbiology2023205(1):46.

[89]

ROBINSON S C,LAKS.P E.The effects of copper in large-scale single-fungus and dual-fungi wood systems[J].Forest Products Journal201060(6):490-495.

[90]

ROBINSON S CLAKS P ERICHTER D L.Stimulating spalting in sugar maple using sub-lethal doses of copper[J].European Journal of Wood and Wood Products201169(4):527-532.

基金资助

云南林业职业技术学院博士基金项目(KYBS202002)

AI Summary AI Mindmap
PDF (1482KB)

424

访问

0

被引

详细

导航
相关文章

AI思维导图

/