PDF
摘要
为了提升复杂背景下遥感影像的滑坡识别精度,提出了一种基于改进掩码区域卷积神经网络(mask region-based convolutional neural network, Mask RCNN)的遥感影像滑坡识别方法。首先,在Mask RCNN模型中将主干网络替换为残差网络101(residual network101,ResNet101),并引入卷积块注意力模块(convolutional block attention module, CBAM)、路径聚合特征金字塔网络(path aggregation feature pyramid network, PAFPN)和级联检测器,构建一个遥感影像滑坡识别模型;然后,基于遥感影像滑坡数据集完成模型训练;最后,将测试影像输入训练后的模型进行检测与分割实验。结果表明:与原Mask RCNN模型相比,改进后模型的Box平均精度从80.2%提升至83.7%,Mask平均精度从79.1%提升至81.1%,预测时间整体变化幅度较小。改进后的Mask RCNN模型具有较高的检测精度和实时处理能力,为滑坡灾害预警提供了重要技术支撑。
关键词
计算机图像处理
/
滑坡识别
/
Mask RCNN
/
遥感影像
/
卷积块注意力模块
Key words
基于改进Mask RCNN的遥感影像滑坡识别方法研究[J].
河北工业科技, 2025, 42(04): 323-332 DOI: