PDF
摘要
目的 分别构建预测膝关节置换术(TKA)后急性疼痛(APP)风险的列线图与分类与回归树(CART)决策树模型,并比较两种模型在对TKA后APP风险预测中的预测效能。方法 以274例膝关节骨性关节炎(KOA)患者为研究对象,均于2018年3月至2024年4月在本院进行TKA治疗,根据术后是否发生APP将患者分为APP组(n=98)和非APP组(n=176),对两组患者进行单因素分析。根据单因素分析结果进行Logistic回归分析TKA后APP的危险因素,根据危险因素绘制列线图模型;根据单因素分析结果进行CART决策树模型建立。绘制两种模型的受试者工作特征(ROC)曲线并对两种模型的预测效能进行DeLong检验。结果 单因素分析结果显示,两组患者在年龄、体质指数(BMI)、糖尿病、西安大略和麦克马斯特大学骨关节炎指数(WOMAC)、术前疼痛灾难化量表(PCS)评分、术前视觉模拟评分(VAS)、止血带使用时间、神经阻滞、术后使用镇痛泵方面比较差异具有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,BMI≥25 kg/m2、糖尿病、PCS评分≥27分、VAS评分≥5分、术后未使用镇痛泵为TKA后APP的独立危险因素(P<0.05)。基于多因素Logistic回归结果采用R软件绘制列线图模型。将单因素分析中差异具有统计学意义的相关因素纳入CART决策树模型,最终模型筛选出5个特征,包括BMI≥25 kg/m2、糖尿病、WOMAC≥48分、术前使用神经阻滞、未使用术后镇痛泵。绘制两种模型的ROC曲线,结果显示列线图模型和CART决策树模型的AUC分别为0.858和0.911,灵敏度分别为81.88%和86.34%,特异度分别为82.91%和87.62%,阳性预测值分别为75.43%和80.69%,阴性预测值分别为82.94%和89.27%,预测准确率分别为83.31%和89.75%。两种模型AUC值相比差异具有统计学意义(Z=9.864,P<0.001)。结论 两种模型均对TKA后APP风险具有较好的预测效能,CART决策树预测效能优于列线图模型。
关键词
膝关节置换术
/
术后急性疼痛
/
预测效能
/
列线图模型
/
CART决策树模型
Key words
列线图与CART决策树模型对膝关节置换术后急性疼痛风险预测中的效能比较[J].
新疆医科大学学报, 2025, 48(02): 195-202 DOI: