基于图结构增强的图神经网络方法

张芳, 单万锦, 王雯

天津工业大学学报 ›› 2024, Vol. 43 ›› Issue (03) : 58 -65.

PDF (2907KB)
天津工业大学学报 ›› 2024, Vol. 43 ›› Issue (03) : 58 -65.

基于图结构增强的图神经网络方法

    张芳, 单万锦, 王雯
作者信息 +

Author information +
文章历史 +
PDF (2976K)

摘要

针对图卷积网络(GCNs)在面对低同质性的图结构时性能骤降问题,提出了一种新颖的基于图结构增强的图神经网络方法,用于学习改善的图节点表示。首先将节点信息通过消息传播和聚合,得到节点的初始表示;然后计算节点表示的相似性度量,得到图的同质结构;最后融合图的原始结构和同质结构进行节点的信息传递得到节点表示用于下游任务。结果表明:在6个公开的数据集上,所提算法在节点分类的多个指标上均优于对比算法,特别是在同质性较低的4个数据集上,所提算法的准确度(ACC)分数分别超过最高基准5.53%、6.87%、3.08%、4.00%,宏平均(F1)值分别超过最高基准5.75%、8.06%、6.46%、5.61%,获得了远高于基准的优越表现,表明所提方法成功改善了图数据的结构,验证了该算法对图结构优化的有效性。

关键词

图结构增强 / 相似性度量 / 图卷积网络 / 节点分类

Key words

引用本文

引用格式 ▾
基于图结构增强的图神经网络方法[J]. 天津工业大学学报, 2024, 43(03): 58-65 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF (2907KB)

75

访问

0

被引

详细

导航
相关文章

AI思维导图

/