In response to the limited applicability and insufficient estimation accuracy of existing traditional modulation index estimation algorithms, a hybrid neural network-based approach is proposed for modulation index estimation of continuous phase modulation (CPM) signals. Leveraging the structural characteristics of CPM signals, redundant information and frequency offset effects are mitigated by employing the signal’s instantaneous frequency as input to the neural network model. Guided by signal denoising theory and the memory properties inherent in CPM signals, soft thresholding and contextual self-attention mechanisms are incorporated into the conventional deep residual network architecture, forming the contextual residual shrinkage network (CRSNet). This enhancement improves the network model’s noise reduction capabilities and long-range information extraction performance. The CRSNet model is subsequently utilized for modulation index estimation. Simulation analyses reveal that, under a 10 dB signal-to-noise ratio condition, the proposed algorithm achieves an estimation accuracy of 10⁻⁴. When compared to conventional algorithms, a performance improvement exceeding 10 dB is observed, with broad applicability to various CPM signal types without requiring a priori information. This method offers parametric support for addressing blind demodulation challenges in non-cooperative CPM signal reception scenarios, demonstrating significant practical application value.
在传统信号调制参数估计过程中,为了能够更好提取信号特征,一般会采用小波分解或经验模态分解等降噪方法对接收信号进行预处理。虽然传统的信号降噪处理方法能够在一定程度上抑制噪声成分,提升信号质量,但其算法参数调整往往依赖于信号分析领域的专业知识和处理经验,并且适用性相对较差,尤其是在作为很多信号降噪方法的关键步骤的软阈值化(Soft Thresholding)处理,需要根据不同信号设置不同阈值,增加了应用的难度和成本,一直是一个重大挑战。针对上述问题,深度学习提供了一个新的思路,通过使用梯度下降算法自动学习得到软阈值化滤波器,而不是让专家人工设计,深度残差收缩网络(Deep Residual Shrinkage Network, DRSN)就是一个典型神经网络模型。DRSN是在ResNet的基础上进行改进的神经网络模型,通过对残差网络、软阈值化和注意力机制进行集成,在进行强噪声或者高冗余数据特征提取任务时具有优势。DRSN通过在基础残差模块(Residual Building Unit, RBU)中引入一个小型子神经网络来学习得到一组阈值,然后对各个通道进行软阈值化,从而达到滤除冗余特征,保留并增强重要特征的目的,在某种程度上实现了自适应降噪的效果[12]。残差收缩模块(Residual Shrinkage Block with Channel-Wise Thresholds, RSBU-CW)是DRSN的基本组成模块,它首先利用两个卷积层对模块输入进行特征提取得到特征向量,然后特征向量通过小型子神经网络学习每个通道的阈值,并利用学习到的阈值对软阈值化处理得到增强的特征向量,最后将与残差连接上的输入相加得到最终输出。RSBU-CW的网络结构如图1所示。与RBU相比,RSBU-CW性能提升的关键是小型子神经网络对阈值的学习以及对特征的软阈值化处理。小型子神经网络首先将提取到的特征向量取绝对值后经全局平均池化降成一维向量,该一维向量会传入两层全连接层并进行Sigmoid函数激活得到值在0到1之间的尺度参数,最后将尺度参数与一维向量平均值相乘得到每个通道的阈值。软阈值化就是将绝对值小于阈值的特征压缩至零,使大于阈值的特征也向零收缩,其函数由下列公式表示:
鉴于基于四阶累积量的估计算法(Method of Moments, MoM)仅适用于REC成形的CPM信号,本研究在同等条件下将所提CRSNet18算法、MoM算法及基于循环平稳性的估计算法(NDA-CYC)的估计性能进行对比分析。图5展示了不同算法对调制阶数、调制指数的RP成形CPM信号在不同相关长度下的估计性能。从图5中可以发现,3种估计算法的误差都随着信噪比的增大而逐渐减小,当信噪比为10 dB时,本文算法估计精度能够达到。在相关长度的情况下,相比两种传统估计算法,本文算法有10 dB的性能增益。并且随着相关长度的逐渐增大,虽然MCRLB没有变化,但所有算法的估计性能都有不同程度下降,这是由于相关长度的增加,符号间的码间串扰变得更加严重,导致信号间的相互干扰增强,同时,较大的相关长度使其对相位变化的影响程度也在增大,从而影响了调制指数的估计性能。这种影响在NDA-CYC算法上表现尤为明显,在的情况下,其性能下降严重,MoM算法次之,本文所提算法受影响最小。值得注意的是,本文所提算法在不同相关长度的情况下都表现出更加优秀的性能,与MCRLB更加接近,能够提供更为准确的调制指数估计。
4.2 性能分析
图6展示了CRSNet网络模型在不同频偏(Doppler Frequency Shift)条件下调制阶数、调制指数、相关长度的RCP成形CPM信号的调制指数估计性能。从图6中可以发现,在较高信噪比条件下随着频偏的逐渐增大,调制指数的估计误差变化不大。这是由于当以CPM信号的瞬时频率作为网络模型的输入时,频率偏移被转化为一个常数项,在输入神经网络前进行预处理的过程中,可以通过对输入进行标准化,从而减弱频偏常数,使得频偏的引入对算法的估计性能影响变小。另外,值得注意的是,网络模型的训练集的信号样本并未加入频率偏移,进一步证明了所提网络模型具有鲁棒性。
FONOLLOSAJ R, NIKIASC L. Analysis of CPM signals using higher-order statistics[C]∥Proceedings of the MILCOM’93-IEEE Military Communications Conference. Piscataway, USA: IEEE, 1993:663-667.
[2]
MUNAWART, SALEEMS, HASSAN SALI, et al. Estimation of modulation index for partial response CPM signal[J]. IEEE Access, 2018,6:7664-7674.
[3]
KHALIDI, ULLAHS A, SALEEMS, et al. A method of moments estimator for modulation index of continuous phase modulation[C]∥Proceedings of the 2019 International Conference on Computing, Networking and Communications. Piscataway, USA: IEEE, 2019:255-259.
[4]
ATASHBARM, VAHIDINIAV. CPM modulation index estimation using LS and BLUE methods[J]. International Journal of Communication Systems, 2019,32(11):e3988.
[5]
BIANCHIP, LOUBATONP, SIRVENF. On the blind estimation of the parameters of continuous phase modulated signals[J]. IEEE Journal on Selected Areas in Communications, 2005,23(5):944-962.
O’SHEAT, HOYDISJ. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017,3(4):563-575.
[12]
ZHAOM H, ZHONGS S, FUX Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020,16(7):4681-4690.
[13]
LIY H, YAOT, PANY W, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(2):1489-1500.