When individuals perform visual tasks, eye movements occur. These movements contain rich visual information, revealing their internal states in visual attention, perception, resource allocation and cognition. Currently, analysis based on eye movement information has brought various application scenarios in many fields of visual interaction. To update researchers on the latest research findings, after reviewing eye movement data acquisition techniques for visual interaction, it is focused on three widely used visual interaction technologies which are eye movement-based visual computing enhancement, visual interaction control, and gaze state assessment. Additionally, challenges and research directions in eye movement-based visual interaction technologies are further explored. This provides a useful reference for advancing technology and application innovation in related fields of visual interaction.
眼动信息优化视觉交互控制,引领新型眼动交互方式。通过精准捕捉眼球运动,将视觉行为转化为机器指令,实现流畅自然交互,达到“所视即所得”。这简化了操作,提升了用户与机器协作效率。文献[41]提出基于眼动的视线控制技术,增强社交机器人交互自然性。依据人类凝视模式理论[42],选取自发观看模式(Spontaneous Viewing, SV)和任务或场景相关观看模式(Task or Scene-Relevant Viewing, TV or SRV)为输入,采用图像梯度向量场算法精准识别,通过SVM分类眼动模式,提升交互自然性。文献[35]则直接将眨眼行为作为基于视觉的人机交互系统的输入,通过眼宽比(Eye Aspect Ratio, EAR)度量和阈值时间设置准确检测自主眨眼,实现眼睛控制鼠标,为残疾人提供便捷交流方式。
STARTSEVM, ZEMBLYSR. Evaluating eye movement event detection: a review of the state of the art[J]. Behavior Research Methods, 2023,55(4):1653-1714.
[2]
LIMJ Z, MOUNTSTEPHENSJ, TEO J. Eye-tracking feature extraction for biometric machine learning[J]. Frontiers in Neurorobotics, 2022,15:No.796895.
[3]
SUNM L, ZOUW, HUN, et al. Iterative brain tumor retrieval for MR images based on user’s intention model[J]. Pattern Recognition, 2022,127:No.108650.
[4]
SYLWESTERB, ADRIANNAS.Toward innovations[M]. Poznań Poland: Poznań University of Economics and Business Press, 2021.
[5]
HERSHMANR, MILSHTEIND, HENIKA. The contribution of temporal analysis of pupillometry measurements to cognitive research[J]. Psychological Research, 2023,87(1):28-42.
[6]
THAKURR K, SUNBEAMM N S, GOECKSV G,et al.Imitation learning with human eye gaze via multi-objective prediction[DB/OL].(2021-02-25) [2024-09-03].
[7]
WEBERD, SANTINIT, ZELLA, et al. Distilling location proposals of unknown objects through gaze information for human-robot interaction[C]∥Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2020:11086-11093.
HUAH, KRISHNASWAMYP, ROLLANDJ P. Video-based eyetracking methods and algorithms in head-mounted displays[J]. Optics Express, 2006,14(10):4328-4350.
[11]
DOP T, HUYNHL Q, LED C, et al. Design of low cost-remote eye tracker using Pupil Center-Corneal Reflection technique[J]. Science & Technology Development Journal-Engineering and Technology, 2021,4(3):1079-1092.
[12]
JUDDT, EHINGERK, DURANDF, et al. Learning to predict where humans look[C]∥Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway, USA: IEEE, 2009:2106-2113.
[13]
YAOR, XUW J, AKATAZ, et al.Human attention in fine-grained classification[C]∥Proceedings of the 32nd British Machine Vision Conference. Manchester, UK: BMVA,2021:1-19.
[14]
JIANGM, HUANGS S, DUANJ Y, et al. SALICON: saliency in context[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2015:1072-1080.
[15]
HEB, DONGW H, LIAOH, et al. A geospatial image based eye movement dataset for cartography and GIS[J]. Cartography and Geographic Information Science, 2023,50(1):96-111.
[16]
KARARGYRISA, KASHYAPS, LOURENTZOUI, et al. Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development[J]. Scientific Data, 2021,8:No.92.
[17]
XIAY, ZHANGD Q, KIMJ, et al. Predicting driver attention in critical situations[C]∥Proceedings of the Computer Vision-ACCV 2018. Cham, Switzerland: Springer, 2019:658-674.
[18]
KIMJ, ROHRBACHA, DARRELLT, et al. Textual explanations for self-driving vehicles[C]∥Proceedings of the Computer Vision-ECCV 2018. Cham, Switzerland: Springer, 2018:577-593.
[19]
PALAZZIA, ABATID, CALDERARAS, et al. Predicting the driver’s focus of attention: the DR(eye)VE project[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(7):1720-1733.
[20]
ZHANGG Y, YAOP P, MAG J, et al. The database of eye-movement measures on words in Chinese reading[J]. Scientific Data, 2022,9:No.411.
[21]
WANGH, WANGQ, LIY,et al.Docrack:a visually-rich document dataset really aligned with human eye movement for machine reading[DB/OL].(2023-10-23) [2024-09-03].
[22]
ISHIBASHIT, SUGANOY, MATSUSHITAY. Gaze-guided image classification for reflecting perceptual class ambiguity[C]∥Proceedings of the Adjunct Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. New York, USA: ACM, 2018:26-28.
[23]
NISHIYAMAM, INOUEM, IWAIY. Gender recognition using a gaze-guided self-attention mechanism robust against background bias in training samples[J]. IEICE Transactions on Information and Systems, 2022,105(2):415-426.
[24]
WANGB, PANH Y, ABOAHA, et al. GazeGNN: a gaze-guided graph neural network for chest X-ray classification[C]∥Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway, USA: IEEE, 2024:2183-2192.
[25]
MAC, ZHAOL, CHENY Z, et al. Eye-gaze-guided vision transformer for rectifying shortcut learning[J]. IEEE Transactions on Medical Imaging, 2023,42(11):3384-3394.
SHARATHK, NIKOLASP M J L.Gaze-informed vision transformers: predicting driving decisions under uncertainty[DB/OL].(2023-08-26)[2024-09-03].
[28]
ZHANGR K, HOUL B, LUR N, et al. A mask image recognition attention network supervised by eye movement[C]∥Proceedings of the Human Brain and Artificial Intelligence. Cham, Switzerland: Springer, 2023:30-38.
[29]
WANGS, OUYANGX, LIUT M, et al. Follow my eye: using gaze to supervise computer-aided diagnosis[J]. IEEE Transactions on Medical Imaging, 2022,41(7):1688-1698.
[30]
ARONSONR M, SANTINIT, KÜBLERT C, et al. Eye-hand behavior in human-robot shared manipulation[C]∥Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. New York, USA: ACM, 2018:4-13.
[31]
SHAFTIA, ORLOVP, FAISALA A. Gaze-based, context-aware robotic system for assisted reaching and grasping[C]∥Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2019:863-869.
[32]
QIANK, ZHANGZ Y, SONGW, et al. GVGNet: gaze-directed visual grounding for learning under-specified object referring intention[J]. IEEE Robotics and Automation Letters, 2023,8(9):5990-5997.
[33]
DAS D, RASHEDM G, KOBAYASHIY, et al. Supporting human-robot interaction based on the level of visual focus of attention[J]. IEEE Transactions on Human-Machine Systems, 2015,45(6):664-675.
[34]
KABRAA, AGRAWALC, PALLAB JYOTI DUTTAH, et al. Vision based communicator[C]∥Proceedings of the 2020 IEEE Applied Signal Processing Conference. Piscataway, USA: IEEE, 2020:293-297.
[35]
BRAUNAGELC, ROSENSTIELW, KASNECIE. Ready for take-over a new driver assistance system for an automated classification of driver take-over readiness[J]. IEEE Intelligent Transportation Systems Magazine, 2017,9(4):10-22.
[36]
ZHAOT C, BAIX, FANGJ W, et al. Gated driver attention predictor[C]∥/Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway, USA: IEEE, 2023:270-276.
[37]
ZEEBK, BUCHNERA, SCHRAUFM. What determines the take-over time an integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015,78:212-221.
PALAZZIA, SOLERAF, CALDERARAS, et al. Learning where to attend like a human driver[C]∥Proceedings of the 2017 IEEE Intelligent Vehicles Symposium. Piscataway, USA: IEEE, 2017:920-925.
[40]
XIAY, KIMJ, CANNYJ, et al. Periphery-fovea multi-resolution driving model guided by human attention[C]∥Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway, USA: IEEE, 2020:1756-1764.
[41]
REZATOFIGHIH, TSOIN, GWAKJ, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]∥Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2019:658-666.
[42]
ALEXEYD, LUCASB, ALEXANDERK,et al.An image is worth 16x16 words:transformers for image recognition at scale[DB/OL].(2020-10-22) [2024-09-03].
[43]
VAN DER ZWANM, CODREANUV, TELEAA. CUBu: universal real-time bundling for large graphs[J]. IEEE Transactions on Visualization and Computer Graphics, 2016,22(12):2550-2563.
[44]
YUL, LIUH.Feature selection for High-Dimensional data:a fast Correlation-Based filter solution[C]∥Proceedings of the 20th International Conference on Machine learning. Washington, USA:AAAI,2003:856-863.
[45]
PENNINGTONJ, SOCHERR, MANNINGC. Glove: global vectors for word representation[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014:1532-1543.
[46]
ALEXEYB, WANGC Y, LIAOH M.YOLOv4:optimal speed and accuracy of object detection[DB/OL].(2020-04-23) [2024-09-03].
[47]
ZHOUY Y, JIR R, LUOG, et al. A real-time global inference network for one-stage referring expression comprehension[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(1):134-143.
[48]
DAVIDS. The social organization of dying[M]. Englewood Cliffs, USA: Prentice-Hall, 1968:438-439.
[49]
GALLEYL, HENTSCHELE H, KUHNK P, et al.Verfahren und steuergerät zum fahrerindividuellen erkennen von unaufmerksamkeiten des fahrers eines fahrzeuges[P/OL]. (2005-10-26)[2005-09-06].
[50]
BRAUNAGELC, GEISLERD, STOLZMANNW, et al. On the necessity of adaptive eye movement classification in conditionally automated driving scenarios[C]∥Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications. New York, USA: ACM, 2016:19-26.
[51]
LYUM T, LIF, XUG Y, et al. Leveraging eye-tracking technologies to promote aviation safety- a review of key aspects, challenges, and future perspectives[J]. Safety Science, 2023,168:No.106295.