多策略徒步旅行优化算法
Multi-strategy Hiking Optimization Algorithm
针对徒步旅行优化算法(HOA)存在收敛速度慢、全局搜索和局部开发能力不平衡等问题,提出一种多策略徒步旅行优化算法(MSHOA)。首先,采用Chebyshev混沌映射初始化提高种群质量;其次,融入自适应扩张因子策略提高算法收敛速度;再次,引入部分维度重组与突变策略增强算法跳出局部极值的能力。将MSHOA与粒子群算法(PSO)、鲸鱼优化算法(WOA)、哈里斯鹰优化算法(HHO)、飞蛾扑火优化算法(MFO)在12个基准测试函数上进行仿真实验。结果表明,MSHOA相较于其他优化算法寻优精度更高、收敛速度更快。最后,将MSHOA应用于减速器设计和焊接梁设计问题。实验结果表明,该算法相较于标准HOA具有显著优势,验证了其在求解实际应用问题中的可行性。
A multi-strategy hiking optimization algorithm (MSHOA) is proposed in this paper to address the limitations of slow convergence speed and imbalanced global-local search capabilities in the original hiking optimization algorithm (HOA). Initially, Chebyshev chaotic mapping is employed to enhance population initialization quality. Subsequently, an adaptive expansion factor strategy is incorporated to accelerate convergence speed. Thirdly, a partial dimension recombination and mutation strategy is introduced to strengthen the algorithm's ability to escape local optima. Comprehensive simulation experiments are conducted on 12 benchmark functions comparing MSHOA with particle swarm optimization (PSO), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and moth-flame optimization (MFO). Results demonstrate that MSHOA achieves superior optimization accuracy and faster convergence compared to other algorithms. Finally, engineering validation through speed reducer design and welded beam design applications confirms that MSHOA exhibits significant performance advantages over standard HOA, proving its effectiveness in solving real-world engineering problems.
徒步旅行优化算法 / Chebyshev混沌映射 / 自适应扩张因子策略 / 部分维度重组与突变策略 / 减速器设计 / 焊接梁设计
hiking optimization algorithm / Chebyshev chaotic mapping / adaptive expansion factor strategy / partial dimension recombination and mutation strategy / speed reducer design / welded beams design
| [1] |
孟乐,张琳,孟宪良,基于遗传算法的无人装备系统弹性恢复策略[J].信息工程大学学报,2024,25(5):624-630. |
| [2] |
方浩添,田乐,郭茂祖.基于多群体混合智能优化算法的卸载决策寻优方法[J].智能系统学报,2024,19(6):1573-1583. |
| [3] |
程适,刘悦,王雪萍,改进头脑风暴优化算法求解多模态多目标问题[J].华中科技大学学报,2024,52(6):24-31. |
| [4] |
陈光武,佘一鸣,杨菊花,改进鲸鱼优化算法在无源时差定位中的应用[J].传感器与微系统,2022,41(3):150-153. |
| [5] |
李长安,谢宗奎,吴忠强,改进灰狼算法及其在港口泊位调度中的应用[J].哈尔滨工业大学学报(自然科学版),2021,53(1):101-108. |
| [6] |
张家维,李昊.多目标蚁狮算法在航材配置优化中的应用研究[J].计算机仿真,2019,36(7):71-74. |
| [7] |
李奕轩,田云娜.多策略改进的鱼鹰优化算法及其应用[J].延安大学学报(自然科学版),2024,43(4):99-108. |
| [8] |
张福兴,高腾,吴泓达.多策略融合的改进黑猩猩优化算法[J].北京航空航天大学学报,2025,51(1):235-247. |
| [9] |
娄革伟,郑永煌,陈均,混合多策略改进的蜣螂优化算法[J].计算机工程与应用,2024,60(24):97-109. |
| [10] |
吴智祥,刘杰,覃涛,多策略改进的精英金豺优化算法[J/OL].计算机工程与科学,2024-06-28. |
| [11] |
杨洋,李国成,贾朝川.基于交叉熵金鹰优化算法的室内可见光定位[J].安徽工业大学学报(自然科学版),2024,41(5):525-534. |
| [12] |
|
| [13] |
崔文璇,张祎彤,张梅洁.基于Tent-Chebyshev切换的粒子群优化算法[J].航空计算技术,2023,53(5):15-19. |
| [14] |
郭云川,张长胜,段青娜,融合多策略的改进秃鹰搜索算法[J].控制与决策,2024,39(1):69-77. |
| [15] |
王娜,吴延凯,许娜.基于粒子群优化算法的农业机器人控制策略研究[J].农机化研究,2025,47(1):205-209. |
| [16] |
安世硕,高海,李维军,基于改进鲸鱼算法的收卷张力PID控制的性能优化[J].辽宁石油化工大学学报,2024,44(4):91-96. |
| [17] |
李煜,林笑笑,刘景森.多策略集成的哈里斯鹰算法求解全局优化问题[J].运筹与管理,2024,33(6):28-34. |
| [18] |
陈振霖,罗亮,郑龙,基于改进飞蛾扑火优化算法的船机桨匹配设计研究[J].计算机科学,2024,51():69-77. |
| [19] |
|
| [20] |
孙仟硕,王英博.融合多策略的改进蜣螂优化算法及其应用[J].信息与控制,2024,53(5):631-641. |
/
| 〈 |
|
〉 |