基于粒子群算法的空天链路地面干扰站选址问题
The Location Problem of Ground Jamming Station in Air-Space Link Based on Particle Swarm Optimization
地面干扰站的选址是空天链路信号干扰实施中的关键一环,直接决定了空天链路干扰的作用范围、干扰效果和成本能耗。通过分析空天链路干扰的实际应用场景,建立选址优化仿真模型,利用融合场景改进的粒子群算法(PSO),针对3种不同优化目标和不同干扰站数量进行实验分析,得出最实用的优化目标和站点数量选取准则,并给出最优布站方案。仿真结果表明,以干扰站最大发射功率最小为优化目标时,布站方案最优,且在增加1个干扰站点时,降低对干扰设备性能要求的效果最明显。
The selection of ground jamming station locations is recognized as a critical component in space-to-air link signal interference implementation, as it directly determines the interference coverage, effectiveness, and associated cost-energy consumption. Through analysis of practical application scenarios for space-to-air link interference, a location optimization simulation model was established. An improved particle swarm optimization (PSO) algorithm integrated with scenario fusion was employed to conduct experimental analyses on three distinct optimization objectives and varying numbers of jamming stations. The most practical optimization criteria and quantitative selection principles for station deployment were derived, accompanied by an optimal layout scheme. Simulation results demonstrate that the minimization of maximum transmission power for jamming stations yields the optimal deployment configuration. Furthermore, the introduction of one additional station was observed to most significantly reduce performance requirements for interference equipment.
空天链路 / 地面干扰站 / 选址优化 / 粒子群算法 / 功率计算
space-to-air link / ground jamming station / location optimization / particle swarm optimization / power optimization
| [1] |
张瑞鹏,冯彦翔,杨宜康. 多无人机协同任务分配混合粒子群算法[J].航空学报,2022,43(12):418-433. |
| [2] |
王尔申,贾超颖,曲萍萍, 基于混沌粒子群优化的北斗/GPS组合导航选星算法[J].北京航空航天大学学报,2019,45(2):259-265. |
| [3] |
张浩为,谢军伟,张昭建, 基于混合遗传-粒子群算法的相控阵雷达调度方法[J].系统工程与电子技术,2017,39(9):1985-1991. |
| [4] |
马艳艳,金宏斌,李浩, 改进粒子群算法在雷达组网优化布站中的应用[J].现代防御技术,2020,48(3):104-112. |
| [5] |
王程民,平殿发,宋斌斌, 基于粒子群算法的多机无源定位系统优化布站[J].计算机与数字工程,2021,49(3):487-492. |
| [6] |
明振兴,吕清花,明月, 基于改进粒子群算法的LED光源阵列优化[J]. 应用光学,2022,43(3):524-531. |
| [7] |
付昕莹. 雷达协同干扰策略及干扰方法研究[D].成都:电子科技大学,2020:52-38. |
| [8] |
黄洋,鲁海燕,许凯波, 一种动态调整惯性权重的简化均值粒子群优化算法[J].小型微型计算机系统,2018,39(12):2590-2595. |
| [9] |
何羚,舒文江,陈良, 改进的多目标粒子群优化算法及其在雷达布站中的应用[J]. 电子科技大学学报(自然科学版),2020,49(6):806-811. |
| [10] |
冯琳,冉晓旻,梅关林, 基于自适应粒子群算法的WSN节点布局优化[J]. 信息工程大学学报,2015,16(5):557-561. |
| [11] |
侯雪梅,高飞,宋瑞丽, 基于量子粒子群的软件模糊可靠性分配模型[J]. 信息工程大学学报,2013,14(1):124-128. |
| [12] |
|
| [13] |
|
| [14] |
姜昌,范晓玲.航天通信跟踪技术导论[M].北京:北京工业大学出版社,2003:183-217. |
| [15] |
毛开富,包广清,徐驰. 基于非对称学习因子调节的粒子群优化算法[J].计算机工程,2010,36(19):182-184. |
| [16] |
陈宏利,李智. 基于改进粒子群优化算法的四旋翼PID参数整定研究[J].科技创新与应用,2023,13(13):55-58. |
| [17] |
杨浩,程志锋,林茜. 声呐浮标阵列通信干扰效能评估研究[J].海军工程大学学报,2023,35(1):40-46. |
| [18] |
徐敬,华阳,徐明, UAV对航母与飞机之间通信干扰效能仿真研究[J].计算机仿真,2016,33(3):47-51. |
| [19] |
杨勇. 防空反导雷达干扰与评估研究[D].西安:西安电子科技大学,2019:35-47. |
/
| 〈 |
|
〉 |