多策略改进花斑翠鸟优化算法及其应用
Multi Strategy Improved Optimization Algorithm for PKO and Its Application
针对基本花斑翠鸟优化算法(PKO)搜索过程中存在种群多样性降低、收敛速度变慢、陷入局部最优解等问题,提出多策略改进花斑翠鸟优化算法(IPKO)。首先,采用拉丁超立方抽样方法对种群个体进行初始化,丰富其多样性。其次,在全局搜索和局部开发阶段引入非线性惯性权重,加快算法在搜索空间的收敛速度。然后,借鉴青蒿素优化算法的后巩固策略,提高算法跳出局部最优解的能力。将IPKO算法对12个基准测试函数进行寻优性能分析,而后与粒子群算法(PSO)、正余弦优化算法(SCA)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)、乌燕鸥优化算法(STOA)和PKO进行比较。实验结果表明该算法相较于其他算法寻优精度和收敛速度更为优秀。此外,将该算法应用于三杆桁架设计优化问题,结果表明该算法在解决实际工程问题时寻优效果优于PKO,验证了该算法的有效性和鲁棒性。
An improved pied kingfisher optimizer (IPKO) with multiple strategies is proposed to address the issues of reduced population diversity, slower convergence speed, and the tendency to get stuck in local optima during the search process of the basic pied kingfisher optimizer (PKO). Firstly, the Latin hypercube sampling method is employed to initialize the population, thereby enhancing its diversity. Secondly, a nonlinear inertia weight is introduced in both the global search and local development stages to expedite the algorithm’s convergence speed. Then, by adopting the post-consolidation strategy from the artemisinin optimization algorithm, the algorithm’s capability to avoid local optima is enhanced. An optimization performance analysis is conducted on the IPKO algorithm using 12 benchmark test functions, and it is compared with particle swarm optimization (PSO), sine cosine algorithm (SCA), sparrow search algorithm (SSA), grey wolf optimizer (GWO), and sooty tern optimization algorithm (STOA), and PKO. The experimental results indicate that the IPKO algorithm exhibits superior convergence accuracy and speed compared to the other algorithms. Additionally, the IPKO algorithm is applied to the optimization problem of three-bar truss design, and the results demonstrate that its accuracy in solving practical engineering problems is better than that of PKO, thereby verifying the effectiveness and robustness of the algorithm.
花斑翠鸟 / 优化算法 / 拉丁超立方抽样 / 非线性惯性权重 / 后巩固策略
pied kingfisher / optimization algorithm / Latin hypercube sampling / nonlinear inertia weight / post consolidation strategy
| [1] |
许晓晨,杨跃武,付科源,基于改进灰狼算法的光伏微网光学材料参数识别研究[J].光学与光电技术,2024,22(3):120-127. |
| [2] |
陈喆,杜龙,陈愈芳, 基于简化粒子群优化算法的可再生微电网随机优化调度策略研究[J].光学与光电技术,2024,22(3):135-141. |
| [3] |
鲁志威,谢源源. Pareto鲸鱼算法对电机结构的多目标工程优化[J].农业装备与车辆工程,2023,61(5):146 -149. |
| [4] |
丁先,李汪繁,徐佳敏, 融合多策略改进的灰狼优化算法及其在汽轮机转子应力监测上的应用[J].汽轮机技术,2024,66(2):138-144. |
| [5] |
侯守江. 基于多元算法融合的软岩隧道围岩变形预测模型及应用研究[J].现代隧道技术,2023,60(6):151 -164. |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
赵梦玲,赵昊男. 基于TCPSO的三维无线传感器网络覆盖[J]. 河南科技大学学报(自然科学版),2024,45(4):40-48. |
| [10] |
杨小猛,李亮,胡雄飞, 基于改进正余弦算法的抱杆结构优化[J]. 应用数学和力学,2024,45(5):529-538. |
| [11] |
梁建国,黄豪中,龙回归,基于麻雀搜索算法的涡喷发动机控制研究[J]. 广西大学学报(自然科学版),2024,49(3):553-562. |
| [12] |
王金玉,赵付佳,王士勇. 基于改进LGWO-INC算法的MPPT控制研究[J]. 自动化与仪表,2024,39(6):1-5. |
| [13] |
赵晨龙,周凡,刘闯.基于改进乌燕鸥算法的主动配电网优化调度[J]. 青海电力,2024,43(2):31-37. |
| [14] |
林恒青. 一种改进的鲸鱼优化算法在工程上的应用[J]. 兰州文理学院学报(自然科学版),2024,38(3):44-47. |
| [15] |
汪逸晖,高亮. 乌鸦搜索算法的改进及其在工程约束优化问题中的应用[J]. 计算机集成制造系统,2021,27(7):1871-1883. |
/
| 〈 |
|
〉 |