When nodes in the unmanned aerial vehicle (UAV) ad hoc network enter or leave the network, the routing needs to be recalculated immediately. If the location information cannot be obtained sufficiently during the routing establishment process, it is easy to lead to mistakes in routing decisions. To solve the above problems, a netgrid model-based dynamic routing (NDR) for UAV swarm is proposed. Firstly, the flight area 1 000 m×1 000 m×1 000 m above the ground is divided into netgrids. The UAV node adopts the routing expression form of the netgrid ID. The routing table is dynamically updated to make routing decisions during the flight. Secondly, the netgrid-based probabilistic routing method is demonstrated in detail. The netgrid to be forwarded is selected according to the NDR strategy, and all nodes in the netgrid have a certain probability to be selected as relays, instead of selecting the gateway in advance, which can effectively reduce routing holes, and avoid local optimization and packet delivery failures. Simulation experiments demonstrate that less energy is consumed by using the proposed method of UAV ad hoc network nodes, the network delay and signaling overhead are significantly reduced compared with those of other routing protocols, and the success rate of packet delivery is also increased by nearly 100%.
无人机(Unmanned Aerial Vehicle, UAV)系统在侦察监视、遥感测绘、交通控制、应急救援等军事、民用领域有着广泛的应用。随着嵌入式系统和无线通信技术的发展,集成化、小型化的无人机集群系统在可靠性和生存能力方面显现出更大优势。美国国防部在2018年发布的《2017—2042年无人系统综合路线图》中,将无人系统的敏捷、响应、自适应性作为远期发展目标之一[1]。自组织网络的优化为无人系统的高效协同提供了重要支撑,飞行自组织网络(Flying Ad Hoc Network, FANET)[2]是移动自组织网络(Mobile Ad Hoc Network, MANET)的一个子集。文献[3-5]提出飞行自组织网络路由协议主要分为基于拓扑的路由、基于地理位置的路由和生物启发式路由。
基于拓扑的路由主要分为平面路由(静态路由、先应路由、反应路由)与层次路由。数据中心路由(Data Centric Routing, DCR)[6]、负载携带和传递路由(Load Carry And Deliver Muting, LCAD)[7]等静态路由大多会随着节点间通讯距离的增加,网络时延比较明显。先应路由如增强型定向优化链路状态路由(Directional Optimized Link State Routing, DOLSR)[8]、基于反向路径转发的拓扑广播路由(Topology Dissemination Based on Reserve-Path Forwarding, TBRPF)[9]、目的节点序列距离矢量路由(Destination Sequenced Distance Vector, DSDV)等,每个节点需维护一个定期更新的路由表,网络开销较大,收敛速度较慢,带宽利用率较低。基于时隙请求的按需距离矢量路由(Ad Hoc On Demand Distance Vector, AODV)[10]、基于AODV的预测性路由策略(Robust and Reliable Predictive Routing Strategy, RARP)[11]等反应路由利用轨迹信息预测定向传输中间节点位置,实现了更长的传输范围,但依然避免不了高时延问题。区域路由(Zone Routing Protocol, ZRP)[12]、移动性预测聚类路由(Mobility Prediction Clustering Routing, MPCR)[13]等层次路由可将多个路由请求限制在一个确定的范围内,减少网络拥塞,但该方法需先在集群中选定各个簇头,分簇粒度越大,簇规模便越大,会产生较高的网络时延和开销;反之,簇粒度越小,复杂的结构会导致链路资源的浪费。
此过程一直持续至当目的节点D接受到RREQ,它会生成一个路由应答消息RREP(id S,id D,d_seq,nexthop,Pprevioushop),沿着反向指针再传回源节点S。其中:id S 表示源节点ID;nexthop表示该应答消息的下一跳栅格ID;Pprevioushop表示传输该应答消息的栅格ID。至此,从S到D的路由发现和从D到S的路由应答过程进行完毕,意味着从源节点S到目的节点D的路由成功建立起来。
Office of the Assistant Secretary of Defense. Unmanned systems integrated roadmap 2017—2042[R/OL]. (2018-08-30)[2024-01-11].
[2]
BEKMEZCII, SAHINGOZO K, TEMELS. Flying ad-hoc networks (FANETs): a survey[J]. Ad Hoc Networks, 2013,11(3):1254-1270.
[3]
LAKEWD S, SA’ADU, DAON N, et al. Routing in flying ad hoc networks: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(2):1071-1120.
[4]
MAUVEM, WIDMERA, HARTENSTEINH. A survey on position-based routing in mobile ad hoc networks[J]. IEEE Network, 2001,15(6):30-39.
[5]
QABAJEHL K, KIAHL M, QABAJEHM M. Position-based routing protocols for ad hoc networks[M]∥GAVRILOVSKA L, KRCO S, MILUTINOVIC V, et al. Application and multidisciplinary aspects of wireless sensor networks: concepts, integration, and case studies. London: Springer, 2011:47-83.
[6]
DE JONGE. Flexible, data-centric UAV platform eases mission adaptation[DB/OL]. (2013-08-19)[2024-01-11].
[7]
CHENGC M, HSIAOP H, KUNGH T, et al. Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm[C]∥Proceedings of IEEE Wireless Communications and Networking Conference. Hong Kong, China: IEEE, 2007. DOI: 10.1109/WCNC.2007.805 .
[8]
ALSHABTATA I, DONGL. Low latency routing algorithm for unmanned aerial vehicles ad-hoc networks[J]. International Journal of Electrical and Computer Engineering, 2011,5(8):989-995.
[9]
BELLURB, LEWISM, TEMPLINF. An ad-hoc network for teams of autonomous vehicles[DB/OL]. (2002-07-18)[2024-01-11].
[10]
FORSMANNJ H, HIROMOTOR E, SVOBODAJ. A time-slotted on-demand routing protocol for mobile ad hoc unmanned vehicle systems[C]∥Proceedings of Unmanned Systems Technology IX. Orlando, USA: SPIE, 2007:530-540.
[11]
GANKHUYAGG, SHRESTHAA P, YOOS J. Robust and reliable predictive routing strategy for flying ad-hoc networks[J]. IEEE access, 2017,5:643-654.
[12]
LIUK S, ZHANGJ, ZHANGT. The clustering algorithm of UAV networking in near-space[C]∥Proceedings of 2008 8th International symposium on antennas, propagation and EM theory. Kunming, China: IEEE, 2008:1550-1553.
[13]
SHUJ, GEY F, LIUL L, et al. Mobility prediciton clustering routing in UAVs[C]∥Proceedings of 2011 International Conference on Computer Science and Network Technology. Harbin, China: IEEE, 2011:1983-1987.
[14]
LINL, SUNQ B, LIJ, et al. A novel geographic position mobility oriented routing strategy for UAVs[J]. Journal of Computational Information Systems, 2012,8(2):709-716.
[15]
CHOIS C, HUSSENH R, PARKJ H, et al. Geolocation-based routing protocol for flying ad hoc networks (FANETs)[C]∥Proceedings of 2018 Tenth International Conference on Ubiquitous and Future Networks. Prague, Czech Republic: IEEE, 2018:50-52.
[16]
ARAFATM Y, MOH S. Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation[J]. IEEE Access, 2018,6:59891-59906.
[17]
SAIFULLAHK, KIMK I. A new geographical routing protocol for heterogeneous aircraft ad hoc networks[C]∥Proceedings of 2012 IEEE/AIAA 31st Digital Avionics Systems Conference. Williamsburg, USA: IEEE, 2012. DOI: 10.1109/DASC.2012.6382336 .
[18]
OUBBATIO S, LAKASA, LAGRAAN, et al. UVAR: an intersection UAV-assisted VANET routing protocol[C]∥Proceedings of 2016 IEEE Wireless Communications and Networking Conference. Doha, Qatar: IEEE, 2016. DOI: 10.1109/WCNC.2016.7564747 .
[19]
AISSANIM, FENOUCHEM, SADOURH, et al. Ant-DSR: cache maintenance based routing protocol for mobile ad-hoc networks[C]∥Proceedings of The Third Advanced International Conference on Telecommunications. Morne, Mauritius: IEEE, 2007. DOI: 10.1109/AICT.2007.14 .
[20]
BAHLOULN E H, BOUDJITS, ABDENNEBIM, et al. Bio-inspired on demand routing protocol for unmanned aerial vehicles[C]∥Proceedings of 2017 26th International Conference on Computer Communication and Networks. Vancouver, Canada: IEEE, 2017. DOI: 10.1109/ICCCN.2017.8038487 .
[21]
RAJS D, PANCHALD V, CHOPRAD R. Flying ad hoc networks (FANETs): a review of mobility models[J]. Journal of Emerging Technologies and Innovative Research, 2020,7(10):2700-2705.
[22]
CHENGC Q, TONGX C, CHENB, et al. A subdivision method to unify the existing latitude and longitude grids[J]. ISPRS International Journal of Geo-Information, 2016,5(9):161.
[23]
ZHANGM Y, CAIW Y. Energy-efficient depth based probabilistic routing within 2-hop neighborhood for underwater sensor networks[J]. IEEE Sensors Letters, 2020,4(6). DOI: 10.1109/LSENS.2020.2995236 .