基于改进单阶段目标检测算法的换流站电气设备目标检测

辛忠良, 叶梁劲, 刘善露, 付晓勇, 廖晓辉

电力科学与工程 ›› 2024, Vol. 40 ›› Issue (02) : 42 -49.

PDF
电力科学与工程 ›› 2024, Vol. 40 ›› Issue (02) : 42 -49.

基于改进单阶段目标检测算法的换流站电气设备目标检测

    辛忠良, 叶梁劲, 刘善露, 付晓勇, 廖晓辉
作者信息 +

Author information +
文章历史 +
PDF

摘要

针对换流站多种电气设备检测时背景复杂干扰性强而又需要快速准确检测出故障的实际情况,提出基于改进YOLOv5(You Only Look Once)的检测方法。首先,为提高算法的准确性和收敛速度,通过K-means聚类算法对YOLOv5模型中的锚框预设进行改进,在数据集预处理阶段得到更适用于换流站电气设备的锚框,使其更加契合换流站电力设备数据集;然后,为提高算法检测过程的识别速度,在特征提取网络添加注意力机制模块,筛选出重要的特征信息。将改进后的算法网络识别效果与YOLOv5中的原始算法网络检测结果进行对比分析。结果表明,检测平均识别精度均值由71.16%提高至92.51%,检测速度由21帧/s提升至31帧/s;同时与R-CNN(Regions with convolutional neural networks)等算法相比,检测精度与速度都有较大提升。添加可解释性分析,将识别结果通过热力图的形式显示,可以更好地应对算法的潜在风险。

关键词

特高压输电 / 换流站 / 电气设备检测 / YOLOv5 / 聚类算法 / 注意力机制 / 可解释性分析

Key words

引用本文

引用格式 ▾
基于改进单阶段目标检测算法的换流站电气设备目标检测[J]. 电力科学与工程, 2024, 40(02): 42-49 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

16

访问

0

被引

详细

导航
相关文章

AI思维导图

/