PDF
摘要
目的 基于机器学习算法构建重症脑出血患者肠内营养喂养不耐受(FI)的风险预测模型并验证。方法 回顾性分析2020年1月—2022年12月扬州大学附属苏北人民医院神经重症监护室485例脑出血患者的临床资料,以7∶3比例将患者随机分为训练集(n=339)和验证集(n=146),采用5种机器学习算法构建FI风险预测模型。绘制受试者工作特征(ROC)曲线,通过曲线下面积(AUC)筛选出预测性能最优的模型,基于最优模型构建列线图模型。通过校准曲线和决策曲线分析(DCA)评估列线图模型的校准度和临床净获益情况。结果 重症脑出血患者肠内营养FI发生率为38.4%(186/485)。5种机器学习算法模型中,Logistic回归模型的预测效能最优(AUC=0.88)。Logistic回归模型分析结果显示,使用利尿剂、使用机械通气、格拉斯哥昏迷量表评分≤5分、使用血管活性药物、白蛋白<35 g/L是重症脑出血患者发生肠内营养FI的危险因素,基于5项危险因素进一步构建列线图模型。校准曲线分析结果显示,校准曲线与理想曲线贴合度较高,说明该列线图模型的校准度高;DCA结果显示,当阈值概率在5%~73%时,应用该列线图模型筛查能使患者临床获益。结论 基于机器学习算法构建重症脑出血患者肠内营养FI风险预测列线图模型,有助于早期筛查肠内营养FI高危患者并及时制订预防措施,从而降低重症脑出血患者肠内营养FI发生率。
关键词
喂养不耐受
/
重症脑出血
/
肠内营养
/
机器学习算法
/
预测模型
/
列线图
Key words
基于机器学习算法的重症脑出血患者肠内营养喂养不耐受风险预测模型构建[J].
实用临床医药杂志, 2024, 28(12): 1-6 DOI: