经前期综合征/经前烦躁障碍症患者杏仁核及其亚区的特征

程茗 ,  李宝怡 ,  张震 ,  蒋召书 ,  杨洁 ,  蒋鹏 ,  袁钟豪

中南大学学报(医学版) ›› 2025, Vol. 50 ›› Issue (03) : 492 -500.

PDF (1725KB)
中南大学学报(医学版) ›› 2025, Vol. 50 ›› Issue (03) : 492 -500. DOI: 10.11817/j.issn.1672-7347.2025.240526
综述

经前期综合征/经前烦躁障碍症患者杏仁核及其亚区的特征

作者信息 +

Characteristics of the amygdala and its subregions in premenstrual syndrome/premenstrual dysphoric disorder patients

Author information +
文章历史 +
PDF (1766K)

摘要

经前烦躁障碍症(premenstrual dysphoric disorder,PMDD)被认为是经前期综合征(premenstrual syndrome,PMS)的严重类型。杏仁核作为情绪调节和应激反应的关键脑区,其功能异常与PMS/PMDD的发生密切相关。杏仁核由多个亚区构成,各亚区在情绪、记忆和应激反应中发挥不同功能,并与多个外部脑区形成复杂的神经连接。总结杏仁核各亚区的相互联系以及与外部区域的连接特点,探讨PMS/PMDD患者杏仁核影像学特征及其神经回路和大脑网络的变化,有助于为靶向调节杏仁核功能治疗PMS/PMDD提供理论依据。

Abstract

Premenstrual dysphoric disorder (PMDD) is considered a severe form of premenstrual syndrome (PMS). As a key brain region involved in emotional regulation and stress responses, the amygdala has been implicated in the pathogenesis of PMS/PMDD. The amygdala is composed of multiple subregions, each playing distinct roles in emotion, memory, and stress responses, and forms complex brain areas. Summarizing the interconnections among amygdala, subregions and their connectivity with external areas, and exploringt the neuroimaging characteristics of the amygdala, as well as changes in its neural circuits and brain networks in these patients, will help provide a theoretical foundation for targeted modulation of amygdala function in the treatment of PMS/PMDD.

Graphical abstract

关键词

经前期综合征 / 经前烦躁障碍症 / 杏仁核 / 连接特征 / 神经回路 / 大脑网络

Key words

premenstrual syndrome / premenstrual dysphoric disorder / amygdala / connectivity characteristics / neural circuits / brain networks

引用本文

引用格式 ▾
程茗,李宝怡,张震,蒋召书,杨洁,蒋鹏,袁钟豪. 经前期综合征/经前烦躁障碍症患者杏仁核及其亚区的特征[J]. 中南大学学报(医学版), 2025, 50(03): 492-500 DOI:10.11817/j.issn.1672-7347.2025.240526

登录浏览全文

4963

注册一个新账户 忘记密码

经前期综合征(premenstrual syndrome,PMS)和经前烦躁障碍症(premenstrual dysphoric disorder,PMDD)是月经周期黄体期的常见疾病,特征是中度至重度的身体、情感或行为症状,会损害女性日常活动和生活质量,其病因繁多复杂[1-2]。目前中枢神经系统与性激素功能失调之间的相关性越来越受关注[3]。杏仁核是大脑中的一个重要结构,属于边缘系统的下枢轴,是产生情绪、识别情绪和调节情绪的重要脑区[4],负责处理和调节与情绪相关的各种功能,已被证实与PMS/PMDD相关。目前针对PMS/PMDD患者杏仁核及亚区结构功能连接特征的文献报道较少。本文总结杏仁核及其与PMS和PMDD的关系,并结合神经影像学技术研究的最新进展,进一步探讨杏仁核的功能连接特征及其在情绪调节中的作用机制,以期为临床诊治提供更加精准的依据和治疗策略。

1 杏仁核亚区结构及连接区域

1.1 杏仁核亚区结构

杏仁核由位于大脑颞叶前内侧两侧成群的细胞核团和皮质区域组成。Mai等[5]提出了目前最广泛使用的杏仁核结构,杏仁核分为中央杏仁核(central amygdaloid nucleus,CeA)、基底内侧核(basomedial amygdaloid,BM)、基底外侧杏仁核(basal-lateral amygdala,BLA)、皮质杏仁核(post cortical amygdaloid,PCo)和内侧杏仁核(medial amygdaloid,Me),杏仁核主要亚区及功能见图1。CeA是杏仁核传出纤维的主要来源[6],负责杏仁核的功能输出,参与躯体感觉、恐惧学习、情绪感知等多种功能,CeA中超过90%的神经元为γ-氨基丁酸(γ-aminobutyric acid,GABA)能神经元[7]。BM也被称为基底核,它主要投射到CeA中[8]。BM中的神经元分泌多种肽,并表达多巴胺、5-羟色胺受体和雌激素受体,可在性激素的影响下对塑造动机行为起至关重要的作用[9]。BLA是杏仁核中最大的亚核团,包含最多的兴奋性神经元,也被称为“杏仁核内的皮层”[10]。在BLA中,恐惧和奖励是由不同神经元群体的阶段性激活来编码,而焦虑则导致神经元持续的活动变化[11]。BLA通过投射到其他脑区,在应激激素对情绪方面的调节机制中也起重要作用[12]。Me与皮质核相连,主要含有GABA能神经元[13],与杏仁核的其他核团一样,Me的激活也与心理压力有关[14]。PCo是整个杏仁核的浅表组,直接与嗅觉系统相连,参与嗅觉刺激的加工[15]。杏仁核与海马体之间相互作用的区域一般被称为杏仁核海马区(amygdalohippocampal area,AHi),通常指的是杏仁核最尾部的部分[16]

1.2 杏仁核各亚区主要连接外部区域

杏仁核通过不同的纤维束与许多外部区域相互连接,其中最重要的是来自PCo、BLA和CeA传出神经投射[17]。来自PCo的传出神经通过终纹床核(bed nucleus of the stria terminalis,BNST),其末端投射主要指向皮质下核团,如隔核、丘脑、终纹、伏隔核等。来自BLA的传出神经通过杏仁核腹侧通路投射到大脑皮层区域,包括额叶皮层、扣带回皮层、颞下皮层等,以及皮层下边缘区域如下丘脑核、隔核和内侧体的胆碱能基底核。CeA主要从内部杏仁核连接接受输入,并通过腹侧杏仁咽通路向脑干的自主神经核团和单胺类神经核团、丘脑中线核团、纹状体末端床核和胆碱能基底核团发出大量传出神经[18],CeA被认为提供了杏仁核的主要传出投射,包括对BNST和臂旁核(parabrachial nuclei,PbN)的传出投射[19]。来自大脑各个区域的投射通过外侧核进入杏仁核,外侧核是杏仁核的主要入口[20-21]。在所有灵长类动物中,杏仁核中最大的传入纤维来自腹侧视觉通路的关联皮层区域,该通路提供有关物体和面部的处理信息,这些信息到达外侧核,以确定是已知的刺激还是基于先前经验的潜在威胁,视觉和听觉信息被分离到外侧核中,这使得对危险的反应更快[22],通过外侧核后,感觉信号在杏仁核的几乎所有部位都能得到处理,生成的信息进一步与其他各种传入信号整合。杏仁核亚区主要连接的外部区域见图2

1.3 杏仁核内部各亚区的联系

BLA通过外侧核接收来自丘脑、皮质关联区域和前额叶皮层(prefrontal cortex,PFC)的感觉信息,在基底核中处理这些信息,并将其发送到CeA的外侧分支中央杏仁核背外侧(central amygdaloid of lateral part,CeL)。同时,来自BLA的输入直接激发CeA的内侧细分中央杏仁核内侧(central amygdaloid of medial part,CeM)。作为对BLA兴奋的回应,CeL和CeM的投射神经元靶向并调节与焦虑有关的多个区域,包括中脑导水管周围灰质(periaqueductal gray,PAG)、BNST、下丘脑和背侧迷走神经复合体(dorsal vagal complex,DVC),以引起自主神经和运动反应[23]。因此,BLA对CeA的兴奋性输出被转化为对厌恶刺激的行为反应,包括回避和冻结行为。BLA主要由谷氨酸能神经元(>80%)组成,而CeA和MeA主要包含GABA能神经元[24-25]。杏仁核组织的经典观点认为,BLA是一种类似皮质的“输入结构”,接收丘脑—皮质的感觉输入(例如听觉),然后向CeA提供直接的兴奋性投射[26]。反过来,CeA被视为杏仁核的“输出结构”,投射到BNST、下丘脑、脑干和其他结构[27]。CeA还可接收独特的输入并包含不同的神经元群,从而开启了CeA神经事件可以直接产生动机行为的可能性。CeA接收来自脑干感觉结构的直接输入,例如孤束核和脑桥臂旁核[28],以及小鼠和大鼠的脑岛皮层[29]和腹侧被盖区[30-31]。此外,BLA还有绕过CeA的直接输出投射,例如基底前脑或海马体内的结构[32]

2 杏仁核与PMDD发病机制的关系

2.1 月经周期变化影响杏仁核功能

杏仁核是大脑引起月经周期相关研究中关注的主要区域之一[33],其机制与杏仁核中表达了大量与月经周期相关的孕酮和雌激素受体有关[34]。Bayer等[35]发现整个月经周期的激素波动会显著影响杏仁核的活动。此外,一项月经周期研究[36]表明,所有这些变化都可能与女性的经前紊乱有关。因此,杏仁核容易受到月经周期相关变化的影响,并可能参与经前紊乱的表征。健康女性在月经周期黄体中期或晚期期间,在负效图像处理中,左杏仁核激活增强[37],孕酮治疗后的类似发现也证实了这一点[38]。PMS/PMDD作为一种与月经周期变化及激素节律性分泌相关的疾病[2],与杏仁核功能异常存在重要关联。

2.2 PMDD患者杏仁核内细胞因子及蛋白质表达 异常

一项关于PMDD血清素转运蛋白结合能力的研究[39]发现,中枢5-羟色胺摄取增加,随后细胞外5-羟色胺流失,这种周期特异性动态变化是PMDD患者中经前抑郁发病的基础。PMDD的病理生理学可能涉及中枢神经系统(central nervous system,CNS)对神经活性类固醇(neuroleptic steroid,NAS)激素敏感性的改变。NAS可由大脑中产生,并与神经元受体如GABA-AR或N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor)相互作用。有学者[40]提出,GABA-AR亚基表达增加,敏感性降低(亲和力下降,可塑性降低),导致Cl-流入减少,抑制GABA能中间神经元释放GABA,降低对锥体神经元的抑制,进而增加锥体神经元的兴奋性,导致PMDD的发生。外源性四氢孕酮(allopregnanolone,ALLO)能明显改善PMDD大鼠的焦虑行为,GABA-AR亚基α4蛋白(GABA-AR α4)在杏仁核中表达较低,且ALLO组的Cl-电流增大,情绪抑制功能增强,证实了ALLO对GABA-AR α4亚基的调节参与了PMDD的发病过程[41]。一项关于PMDD患者在月经周期中大脑激活状态以及与血清中孕酮衍生神经类固醇水平相关性的研究[38]发现,在PMDD患者中,ALLO的内源性3β-差向异构体异脲孕烷酮(isoallopregnanolone,ISO)/ALLO水平与杏仁核活动之间呈正相关,而在对照组中则相反,证实了PMDD患者在月经周期的晚黄体期表现出情绪诱导的大脑反应改变,这可能与其对生理水平的GABA-AR活性神经类固醇的异常反应有关。

3 PMS/PMDD患者杏仁核特征分析

3.1 PMS/PMDD杏仁核影像学特征

近年来,虽然神经成像研究开始应用于PMS/PMDD疾病诊断,但其神经病理机制尚不清楚[42]。越来越多的证据表明,杏仁核是PMS和PMDD患者大脑中最脆弱的区域之一[43]。杏仁核是性激素作用的潜在目标[44],雌激素和孕激素受体广泛分布于边缘系统,其中杏仁核和海马体的神经元和神经胶质细胞最为密集,因此,杏仁核和海马体是PMS和经前抑郁症最敏感的区域[45]。健康女性在月经周期中杏仁核表现出结构和功能倾向的变化[46]。功能磁共振成像(functional magnetic resonance imaging,fMRI)研究[47]表明,孕酮选择性地增加了杏仁核的反应性,并调节了杏仁核与其他大脑区域的功能耦合,这些改变可能涉及与月经周期相关的调节反馈机制。与健康个体相比,PMS患者双侧杏仁核的皮质下体积显著增大[48-49]。此外一项研究[50]也发现:健康女性的双侧杏仁核活动与孕酮代谢物水平呈负相关,而在PMDD患者中黄体期孕酮水平与双侧杏仁核对社交负面图片的反应呈正相关。已有研究[51]证实了杏仁核功能活动的增强与黄体晚期患者的情绪失调、焦虑和抑郁的程度相关;fMRI测量结果显示,女性低至中度黄体酮/孕酮浓度会增加杏仁核的活动,较高浓度使杏仁核活性降低。因此,卵巢激素和神经递质及其受体是导致杏仁核结构和功能异常,进而引发PMS/PMDD和经前抑郁症症状的关键因素。

3.2 PMS/PMDD中杏仁核相关的神经回路

大脑中具有不同属性和位置的区域通过各种形式的复杂连接形成神经回路。杏仁核外侧核和前杏仁核区的结构变化可能与神经回路的变化有关,而神经回路的变化可能是疾病发生和发展的结果。研究[52-54]发现杏仁核和海马体在几个关键的神经回路中占据核心位置,如海马体-杏仁核、杏仁核-额岛、杏仁核-PFC和杏仁核-丘脑回路。以海马体-杏仁核环路为例,该环路的功能活动与健康女性月经周期各阶段卵巢性腺激素水平的波动基本一致,即海马体-杏仁核回路与雌二醇水平呈正相关[55]。孕酮及其衍生物通过调节杏仁核的活动来调节情绪和记忆的处理,而杏仁核又影响海马体和梭形回,这也与海马体-杏仁核环路有关[56]。除杏仁核-海马体回路外,PMS及PMDD患者的杏仁核-PFC回路上也发生显著变化。在生理条件下,前额叶对杏仁核保持自下而上的抑制作用,并使杏仁核处于高度抑制状态,这对维持正常的情绪行为至关重要,当接触到雌激素和孕激素时,前额叶皮质对杏仁核的抑制作用减弱,导致杏仁核过度激活,从而导致经前症状[43]。一项大脑结构研究[49]发现:情绪的中央回路,包括杏仁核、外侧PFC和眼眶PFC,参与了PMS的发病。女性内分泌系统的异常激活及其对认知和情感回路的影响可能是PMS和经前抑郁症发病的基础[57]。性激素浓度会随着女性脑结构和功能的变化而变化,进而影响女性对抑郁情绪的敏感性,特别是性激素调节下的杏仁核相关神经回路的异常变化,可能在PMS/PMDD的发病机制中发挥重要作用[58]。PMS/PMDD中杏仁核相关神经回路的输入和输出连接见图3

3.3 PMS/PMDD中杏仁核相关的大脑网络

3.3.1 PMS/PMDD女性激素对大脑网络的影响

早期研究[38]表明,雌激素和黄体酮可以调节情绪、认知和大脑网络损伤的敏感性。同样,一项网络动力学研究[59]发现,月经周期中卵巢激素水平的波动会影响大脑核心区域,这可能会深刻影响整个大脑网络的动态。更重要的是,在性激素的影响下,健康女性的大脑网络发生了全面的拓扑重排,PMS患者也出现了拓扑学改变[60]。比较从中期卵泡期到晚期黄体期的PMS患者和健康研究参与者的拓扑参数显示功能脑网络之间的分离减少和整合增强[61];特别是由杏仁核、海马体、丘脑和腹侧纹状体组成的特定的情绪调节网络与情绪的评估和表达密切相关[62]。这一发现揭示了情绪、大脑网络和性激素波动之间的互动效应。此外,结构研究[63]证实,在PMDD患者中,负责连接颞叶的纤维束显示出显著的微结构变化,上纵束的各向异性分数(fractional anisotropy,FA)与经前症状的严重程度呈正相关。相反,与其他精神疾病不同,PMDD患者的脑白质结构完整性更高。这种相反的表现可以用性激素的神经保护作用来解释,性激素积极地塑造了激素依赖型疾病的大脑结构。因此,深入了解网络动力学和拓扑学的易感性和可塑性对于全面探索PMS和PMDD的神经病理机制是必要的。

3.3.2 PMS/PMDD中与杏仁核相关的大脑网络

大脑网络通常包含多个神经回路,跨越不同的大脑区域。相比于神经回路,它是更大范围内的神经元群体和脑区之间的连接和互动,负责处理更复杂和广泛的情绪和认知等功能。既往成像研究[64]已经调查了健康女性在月经周期中的几个大脑网络的特征,但对PMS和PMDD关注较少。关于默认模式网络(default mode network,DMN)的研究[65]在PMDD患者中发现了多种功能连接(functional connectivity,FC)异常,包括与海马旁回、内侧颞上回和颞下回的连接;在执行控制网络(executive control network,ECN)中,PMDD患者左侧ECN和左侧中回之间的连接显著增强,并与情绪调节密切相关。这一发现表明PMDD患者和健康研究参与者左侧ECN的内在网络动力学不同。国内学者[66]应用FC、比值低频振幅及局部一致性等方法对PMS患者脑区进行了一系列研究,发现PMS患者扣带皮层、额叶皮层、楔前叶、杏仁核等参与认知和情绪调节脑区的DMN和情绪网络存在异常,同时还发现PMS患者眶额叶皮层和杏仁核之间的连接减少。眶额叶皮层在颞叶-杏仁核-眶额网络中起重要作用,一系列相关的应激条件,如情绪失调、冲动和执行功能受损,都与眶额叶皮层的变化相关[67]。一项研究[49]发现:与健康研究参与者相比,PMS患者左侧杏仁核与双侧内侧前额叶皮层(medial prefrontal cortex,mPFC)、双侧前扣带皮层(anterior cingulate cortex,ACC)、右侧颞极、右侧中央前回和左侧脑岛之间的FC增加;以及左侧杏仁核与右侧眶额皮层(orbitofrontal cortex,OFC)和右侧海马体之间的FC减少。与健康研究参与者相比,PMS患者右侧杏仁核与双侧ACC、双侧岛、右侧颞极、右侧中央前回和左侧mPFC之间的FC也增加,与右侧OFC和右侧海马体之间的FC减少。

4 结语与展望

杏仁核并非单一功能区域,而是由多个亚区组成,每个亚区在情绪反应的生成和调节中起着独特的作用。尽管已有研究揭示了杏仁核在PMS/PMDD中的重要作用,但对于杏仁核各亚区在情绪调节中的具体机制仍然存在较大空白。现有针对动物及人类的研究中,多数以杏仁核整个脑区进行研究,对细化的亚区研究并未取得进展,尤其在亚区对外连接特征、参与神经回路和大脑网络的亚区连接特征仍有较大的研究空间。

既往关于杏仁核及其亚区功能连接特征的研究多基于临床影像学,从机制层面证实神经回路和大脑网络的分子机制研究较少。PMDD是一种具有周期性、激素相关的情绪障碍,激素与神经递质之间的交互可能是PMS/PMDD患者杏仁核功能失调的关键。未来可以通过动物模型和临床研究,探讨激素波动如何通过神经递质系统作用于杏仁核亚区,进而引发PMS/PMDD的情绪障碍。也可利用光遗传学等技术,对杏仁核亚区进行精准的功能调节,研究不同亚区活动与情绪反应的关系。如ALLO和GABA的变化对杏仁核相关的神经回路和大脑网络是否产生抑制/兴奋性影响,值得未来进一步探究。

在疾病诊断中,参照美国产科与妇科学院(American College of Obstetricians and Gynecologists,ACOG)及精神障碍诊断与统计手册(第5版)(The Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition,DSM-5)的PMS/PMDD诊断标准,结合杏仁核神经回路及大脑网络的影像学特性,可为PMDD的临床诊断提供影像学依据。在药物治疗方面,未来的研究可探索如何通过药物精确调节杏仁核相关的神经回路和大脑网络,进而提升治疗效果。在深脑刺激和经颅磁刺激等神经调节技术方面,未来可对神经回路及大脑网络的研究成果进行进一步优化应用。

综上,杏仁核在PMS/PMDD的发病机制中具有重要作用。未来可结合多模态神经影像学研究,通过fMRI、弥散张量成像、正电子发射体层仪等多模态影像技术,研究杏仁核各亚区在PMS/PMDD中的动态变化及其相互作用,并且需要更多地关注 PMS/PMDD的生物标志物、下丘脑-垂体-卵巢轴激素水平与特定神经回路、结构功能耦合的相关性。

参考文献

[1]

Takeda T. Premenstrual disorders: Premenstrual syndrome and premenstrual dysphoric disorder[J]. J Obstet Gynaecol Res, 2023, 49(2): 510-518.

[2]

Tiranini L, Nappi RE. Recent advances in understanding/management of premenstrual dysphoric disorder/premenstrual syndrome[J]. Fac Rev, 2022, 11: 11.

[3]

许秋祺, 高明周, 任律凝, 经前期综合征/经前烦躁障碍症中西医治疗研究进展[J]. 世界科学技术-中医药现代化, 2022, 24(11): 4465-4472.

[4]

XU Qiuqi, GAO Mingzhou, Ren Lvning, et al. Research progress of traditional Chinese and western medicine treatment of premenstrual syndrome/premenstrual dysphoric disorder[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 24(11): 4465-4472.

[5]

Šimić G, Tkalčić M, Vukić V, et al. Understanding emotions: origins and roles of the amygdala[J]. Biomolecules, 2021, 11(6): 823.

[6]

Mai J K, Majtanik M, Paxinos G. Atlas of the human brain [M]. Academic Press, 2015.

[7]

Tamas D, Brkic Jovanovic N, Stojkov S, et al. Emotion recognition and social functioning in individuals with autism spectrum condition and intellectual disability[J/OL]. PLoS One, 2024, 19(3): e0300973[2024-09-01].

[8]

Fraser KM, Kim TH, Castro M, et al. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala[J]. iScience, 2024, 27(5): 109652.

[9]

Zhang L, Hu X, Hu Y, et al. Structural covariance network of the hippocampus-amygdala complex in medication-naïve patients with first-episode major depressive disorder[J]. Psychoradiology, 2022, 2(4): 190-198.

[10]

Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation[J]. Neurosci Biobehav Rev, 2024, 159: 105569.

[11]

Abuhasan Q, Reddy V, Siddiqui W. Neuroanatomy, Amygdala [M]// StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023.

[12]

Lee SC, Amir A, Haufler D, et al. Differential recruitment of competing valence-related amygdala networks during anxiety[J]. Neuron, 2017, 96(1): 81-88.

[13]

Tottenham N, Weissman MM, Wang Z, et al. Depression risk is associated with weakened synchrony between the amygdala and experienced emotion[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2021, 6(3): 343-351.

[14]

Jie F, Yin G, Yang W, et al. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases[J]. Front Neurosci, 2018, 12: 562.

[15]

Sheng ZF, Zhang H, Phaup JG, et al. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension[J]. Cardiovasc Res, 2023, 119(8): 1751-1762.

[16]

Keshavarzi S, Sullivan RKP, Ianno DJ, et al. Functional properties and projections of neurons in the medial amygdala[J]. J Neurosci, 2014, 34(26): 8699-8715.

[17]

Sedwick VM, Autry AE. Anatomical and molecular features of the amygdalohippocampal transition area and its role in social and emotional behavior processes[J]. Neurosci Biobehav Rev, 2022, 142: 104893.

[18]

Li M, Ribas EC, Wei P, et al. The ansa peduncularis in the human brain: a tractography and fiber dissection study[J]. Brain Res, 2020, 1746: 146978.

[19]

Felten D L, O’banion M K, Maida M E. Netter’s atlas of neuroscience[M]. Elsevier Health Sciences, 2015.

[20]

Halsell CB. Differential distribution of amygdaloid input across rostral solitary nucleus subdivisions in rat[J]. Ann N Y Acad Sci, 1998, 855: 482-485.

[21]

Sypré L, Sharma S, Mantini D, et al. Intrinsic functional clustering of the macaque insular cortex[J]. Front Integr Neurosci, 2024, 17: 1272529.

[22]

Esposito M, Palermo S, Nahi YC, et al. Implicit selective attention: the role of the mesencephalic-basal Ganglia system[J]. Curr Neuropharmacol, 2024, 22(9): 1497-1512.

[23]

Wang J, Yang Q, Liu X, et al. The basal forebrain to lateral habenula circuitry mediates social behavioral maladaptation[J]. Nat Commun, 2024, 15(1): 4013.

[24]

Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety[J]. Nat Rev Neurosci, 2015, 16(6): 317-331.

[25]

McDonald AJ. Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat[J]. J Comp Neurol, 1982, 212(3): 293-312.

[26]

Cassell MD, Gray TS, Kiss JZ. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study[J]. J Comp Neurol, 1986, 246(4): 478-499.

[27]

Stern DB, Wilke A, Root CM. Anatomical connectivity of the intercalated cells of the amygdala[J/OL]. eNeuro, 2023, 10(10): ENEURO.0238-23.2023[2024-09-01].

[28]

McDonald AJ. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations[J/OL]. J Neurosci Res, 2024, 102(3): e25318[2024-09-01].

[29]

Plas SL, Tuna T, Bayer H, et al. Neural circuits for the adaptive regulation of fear and extinction memory[J]. Front Behav Neurosci, 2024, 18: 1352797.

[30]

Ju A, Fernandez-Arroyo B, Wu Y, et al. Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex[J]. Mol Brain, 2020, 13(1): 99.

[31]

Avegno EM, Kasten CR, Snyder WB, et al. Alcohol dependence activates ventral tegmental area projections to central amygdala in male mice and rats[J/OL]. Addict Biol, 2021, 26(4): e12990.

[32]

Zhou Z, Liu X, Chen S, et al. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses[J]. Neuron, 2019, 103(3): 473-488.

[33]

Piantadosi SC, Zhou ZC, Pizzano C, et al. Holographic stimulation of opposing amygdala ensembles bidirectionally modulates valence-specific behavior via mutual inhibition[J]. Neuron, 2024, 112(4): 593-610.

[34]

Lisofsky N, Lindenberger U, Kühn S. Amygdala/hippocampal activation during the menstrual cycle: evidence for lateralization of effects across different tasks[J]. Neuropsychologia, 2015, 67: 55-62.

[35]

Smiley CE, Pate BS, Bouknight SJ, et al. Estrogen receptor beta in the central amygdala regulates the deleterious behavioral and neuronal consequences of repeated social stress in female rats[J]. Neurobiol Stress, 2023, 23: 100531.

[36]

Bayer J, Schultz H, Gamer M, et al. Menstrual-cycle dependent fluctuations in ovarian hormones affect emotional memory[J]. Neurobiol Learn Mem, 2014, 110: 55-63.

[37]

Sundström Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective[J]. Front Neurosci, 2014, 8: 380.

[38]

Gingnell M, Morell A, Bannbers E, et al. Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder[J]. Horm Behav, 2012, 62(4): 400-406.

[39]

Stiernman L, Dubol M, Comasco E, et al. Emotion-induced brain activation across the menstrual cycle in individuals with premenstrual dysphoric disorder and associations to serum levels of progesterone-derived neurosteroids[J]. Transl Psychiatry, 2023, 13(1): 124.

[40]

Sacher J, Zsido RG, Barth C, et al. Increase in serotonin transporter binding in patients with premenstrual dysphoric disorder across the menstrual cycle: a case-control longitudinal neuroreceptor ligand positron emission tomography imaging study[J]. Biol Psychiatry, 2023, 93(12): 1081-1088.

[41]

Hantsoo L, Neill Epperson C. Allopregnanolone in premenstrual dysphoric disorder (PMDD): Evidence for dysregulated sensitivity to GABA-a receptor modulating neuroactive steroids across the menstrual cycle[J]. Neurobiol Stress, 2020, 12: 100213.

[42]

Sun Y, Gao M, Gao D, et al. Allopregnanolone-mediated GABAA-Rα4 function in amygdala and hippocampus of PMDD liver qi-invasion syndrome model rats[J]. Aging, 2023, 15(4): 1143-1157.

[43]

Neill Epperson C, Steiner M, Ann Hartlage S, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5[J]. Am J Psychiatry, 2012, 169(5): 465-475.

[44]

Dubol M, Neill Epperson C, Sacher J, et al. Neuroimaging the menstrual cycle: a multimodal systematic review[J]. Front Neuroendocrinol, 2021, 60: 100878.

[45]

McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain[J]. J Neurosci Res, 2017, 95(1/2): 24-39.

[46]

Stuursma A, Lanjouw L, Idema DL, et al. Surgical menopause and bilateral oophorectomy: effect of estrogen-progesterone and testosterone replacement therapy on psychological well-being and sexual functioning; A systematic literature review[J]. J Sex Med, 2022, 19(12): 1778-1789.

[47]

Dan R, Canetti L, Keadan T, et al. Sex differences during emotion processing are dependent on the menstrual cycle phase[J]. Psychoneuroendocrinology, 2019, 100: 85-95.

[48]

Engman J, Sundström Poromaa I, Moby L, et al. Hormonal cycle and contraceptive effects on amygdala and salience resting-state networks in women with previous affective side effects on the pill[J]. Neuropsychopharmacology, 2018, 43(3): 555-563.

[49]

Deng D, Pang Y, Duan G, et al. Larger volume and different functional connectivity of the amygdala in women with premenstrual syndrome[J]. Eur Radiol, 2018, 28(5): 1900-1908.

[50]

Liu P, Wei Y, Fan Y, et al. Cortical and subcortical changes in patients with premenstrual syndrome[J]. J Affect Disord, 2018, 235: 191-197.

[51]

Ossewaarde L, Hermans EJ, van Wingen GA, et al. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle[J]. Psychoneuroendocrinology, 2010, 35(1): 47-55.

[52]

Petersen N, Ghahremani DG, Rapkin AJ, et al. Brain activation during emotion regulation in women with premenstrual dysphoric disorder[J]. Psychol Med, 2018, 48(11): 1795-1802.

[53]

Cossart R, Khazipov R. How development sculpts hippocampal circuits and function[J]. Physiol Rev, 2022, 102(1): 343-378.

[54]

Asim M, Wang HJ, Waris A. Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression[J]. Neuropeptides, 2023, 98: 102322.

[55]

Comasco E, Sundström-Poromaa I. Neuroimaging the menstrual cycle and premenstrual dysphoric disorder[J]. Curr Psychiatry Rep, 2015, 17(10): 77.

[56]

Diekhof EK, Ratnayake M. Menstrual cycle phase modulates reward sensitivity and performance monitoring in young women: Preliminary fMRI evidence[J]. Neuropsychologia, 2016, 84: 70-80.

[57]

Bixo M, Johansson M, Timby E, et al. Effects of GABA active steroids in the female brain with a focus on the premenstrual dysphoric disorder[J/OL]. J Neuroendocrinol, 2018, 30(2)[2024-09-01].

[58]

Reuveni I, Dan R, Canetti L, et al. Aberrant intrinsic brain network functional connectivity during a face-matching task in women diagnosed with premenstrual dysphoric disorder[J]. Biol Psychiatry, 2023, 94(6): 492-500.

[59]

Li S, Duan G, Deng D. MRI advances on structural and functional changes in limbic system with premenstrual syndrome[J]. Meta-Radiology, 2025: 100147.

[60]

Hidalgo-Lopez E, Mueller K, Harris T, et al. Human menstrual cycle variation in subcortical functional brain connectivity: a multimodal analysis approach[J]. Brain Struct Funct, 2020, 225(2): 591-605.

[61]

Park CH, Lee HK, Kweon YS, et al. Emotion-induced topological changes in functional brain networks[J]. Brain Topogr, 2016, 29(1): 108-117.

[62]

Monteiro DC, Ramos CDS, Alves LENN, et al. Functional and structural neuroimaging in premenstrual dysphoric disorder: a systematic review[J]. J Psychiatr Res, 2024, 175: 205-210.

[63]

Tene O, Bleich Cohen M, Helpman L, et al. Limbic self-neuromodulation as a novel treatment option for emotional dysregulation in premenstrual dysphoric disorder (PMDD): a proof-of-concept study[J]. Psychiatry Clin Neurosci, 2023, 77(10): 550-558.

[64]

Gu X, Dubol M, Stiernman L, et al. White matter microstructure and volume correlates of premenstrual dysphoric disorder[J/OL]. J Psychiatry Neurosci, 2022, 47(1): E67-E76[2024-09-01].

[65]

Pritschet L, Santander T, Taylor CM, et al. Functional reorganization of brain networks across the human menstrual cycle[J]. Neuroimage, 2020, 220: 117091.

[66]

Petersen N, Ghahremani DG, Rapkin AJ, et al. Resting-state functional connectivity in women with PMDD[J]. Transl Psychiatry, 2019, 9(1): 339.

[67]

Duan G, Liu H, Pang Y, et al. Hippocampal fractional amplitude of low-frequency fluctuation and functional connectivity changes in premenstrual syndrome[J]. J Magn Reson Imaging, 2018, 47(2): 545-553.

[68]

Fellows LK. Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage[J]. Ann N Y Acad Sci, 2011, 1239: 51-58.

基金资助

国家自然科学基金(82160920)

国家自然科学基金(82360951)

中国博士后科学基金(2022M711733)

贵州省中医药、民族医药科学技术研究专项课题(QZYY-2024-011)

贵州省2024年研究生教育创新计划项目(2024YJSKYJJ377┫。This work was supported by the National Natural Science Foundation ┣82160920)

贵州省2024年研究生教育创新计划项目(82360951)

the China Postdoctoral Science Foundation(2022M711733)

the Research Project on Traditional Chinese Medicine and Ethnic Medicine Science and Technology of Guizhou Province(QZYY-2024-011)

the Guizhou Province 2024 Graduate Education Innovation Program Project(2024YJSKYJJ377)

RIGHTS & PERMISSIONS

开放获取(Open access):本文遵循知识共享许可协议,允许第三方用户按照署名-非商业性使用-禁止演绎4.0(CC BY-NC-ND 4.0)的方式,在任何媒介以任何形式复制、传播本作品(https://creativecommons.org/licenses/by-nc-nd/4.0/)。

AI Summary AI Mindmap
PDF (1725KB)

312

访问

0

被引

详细

导航
相关文章

AI思维导图

/