植物通过整合体内多种植物激素分子响应外界刺激,适应环境变化。不同植物激素之间如何通过互作网络的方式完成协同调控,是近年来人们持续关注的焦点
[1]。植物激素主要有生长素(auxin)、细胞分裂素(cytokinins)、赤霉素(gibberellins,GAs)、脱落酸(abscisic acid,ABA)、乙烯(ethylene)、油菜素甾醇(brassinosteroids,BRs)、茉莉素(jasmonic acid,JA)、水杨酸(salicylic acid,SA)、独脚金内酯(strigolactones,SLs)等
[2]。近年来,随着研究的不断深入,油菜素内酯(Brassinolide,BR) 介导的信号转导途径及其调控植物生长发育的分子机制逐渐取得了重要进展,引起人们广泛关注
[3]。
迄今为止,在自然界中共分离、鉴定出超过70种油菜素内酯化合物,统称为油菜素甾醇(BRs)
[4-5]。BR是一类甾醇类植物激素,分子式为C
28H
48O
6,由一个甾体核和连在核C-17位的一个侧链组成
[6]。BR介导的信号通路由受体蛋白、激酶、转录因子等多种元件组成,信号转导过程包括细胞质膜表面BR受体感知、识别BR信号分子、BR信号在细胞质中传递和BR信号在细胞核内逐级放大
[7]。植物细胞质膜表面BR受体BRI1(brassinosteroid insensitive 1)是一个富含亮氨酸重复序列的类受体激酶。SERK3(somatic embryogenesis receptor kinase 3)/BAK1(BRI1 associated kinase 1)是与BRI1结合识别BR信号的共受体
[8]。未结合BR时,BRI1与BAK1处于分离状态;当BR与BRI1结合后,BRI1发生自磷酸化,激活的BRI1与BAK1结合并激活BAK1,将BR信号传递至胞内。BRI1和BAK1复合物激活下游胞质激酶BSKs(BR signaling kinases)和CDG1(constitutive differential growth 1),进而激活下游磷酸酶BSU1(BRI1-suppressor 1),并将信号传递给BIN2(brassinosteroid insensitive 2)
[8-9]。BIN2是BR信号通路的负调控因子,在BR缺乏时,BIN2磷酸化下游转录因子并抑制其转录活性,如BES1(BRI1-ems suppressor 1)和BZR1(brassinazole resistant 1)。当BR存在时,BSU1使BIN2去磷酸化发生降解,激活BES1和BZR1等转录因子,调控涉及细胞壁合成、细胞伸长、光合作用、离子运输和植物激素合成等基因的表达
[10]。BR信号途径不是孤立存在的,其与不同植物激素间存在广泛联系,尤其是BR与生长素、GAs和乙烯等互作,共同精细、精准调控植物生长发育,以适应不断变化的环境。本文基于BR与其他植物激素互作网络的研究进展,从3个方面介绍BR与其他植物激素相互作用共同调控植物生长发育及胁迫响应的分子机制(
表1),为深入探究BR生物学功能提供参考。
1 油菜素内酯与其他植物激素互作调控植物生长
1.1 BR与ABA、GAs共同调控种子萌发
种子萌发受植物内源和外源环境因素双重影响,作为植物生长发育关键的内在调节因子,植物激素响应环境信号刺激发挥调控作用。
在拟南芥(
Arabidopsis thaliana)中,ABA抑制种子萌发而BR促进萌发。其中,BR-ABA信号通路中ABI5(abscisic acid insensitive 5)与BZR1作用调控种子萌发
[7]。BZR1结合
ABI5启动子区G-box(CACGTG)负调控
ABI5表达,促进种子萌发
[11]。BR信号通路的负调控因子GSK3s(glycogen synthase kinase 3-like kinases)是连接BR和ABA信号通路的枢纽。GSK3s家族成员BIN2不仅可以调节ABA信号通路的下游组分,还可以被ABA通路的上游组分调节,从而抑制种子萌发。例如,ABI1(abscisic acid insensitive 1)和ABI2导致BIN2去磷酸化,从而磷酸化SnRK2s(snf1-related kinase 2s)或ABI5,促进ABA信号传递,抑制种子萌发
[12]。进一步研究
[13]发现,BES1作为BR信号通路中的关键转录因子,直接与ABI5相互作用,干扰其转录活性,削弱ABA信号输出,从而促进种子萌发。在水稻(
Oryza sativa)中,GAs能够恢复BR合成缺失和不敏感型突变体种子萌发缺陷。其中,丰度差异显著的蛋白包括LEA(late embryogenesis abundant)家族,遗传学证据表明LEA在BR和GAs信号通路下游都发挥作用
[14]。还有研究
[15]表明,BR和GAs在水稻种子萌发过程中均可诱导半胱氨酸蛋白酶的表达,降解谷蛋白从而促进种子萌发。
1.2 BR与GAs、乙烯协同促进植物形态建成
植物通过光受体感受光信号,影响下胚轴伸长从而调节自身生长发育
[16]。暗前远红光(end-of-day far-red,EOD-FR)处理“日本雪松”南瓜(
Cucurbita moschata ‘Japanese cedar’)后,外施GAs、BR及GAs抑制剂(paclobutrazol,PAC)、BR合成抑制剂(brassinazole,BRZ),发现BR缓解了PAC对下胚轴伸长的抑制作用,GAs也缓解了BRZ对下胚轴伸长的抑制;BRZ处理抑制下胚轴内GAs的合成及其信号转导相关基因的表达;PAC处理导致下胚轴内的BR含量显著降低,抑制BR合成和信号转导相关基因的表达。表明GAs和BR协同调控南瓜下胚轴伸长过程
[17]。此外,研究
[18]还发现BR能与JA协同提高大豆(
Glycine max)叶片光合能力。
除参与植物光形态建成之外,BR也参与调控植物暗形态建成。在拟南芥黄化苗的子叶和顶端弯钩处特异表达的生长素快速响应基因
SAUR17(small auxin up rna17)是植物暗形态建成的关键应答因子
[19]。
SAUR17转录除了受光调控外,还受BR和乙烯信号调控,表现为PIF(phytochrome-interacting factors)、BZR1、EIN3(ethylene insensitive 3)及EIL1(ein3-like 1)在植物体内形成转录复合体共同调控
SAUR17转录。其中PIF和EIN3/EIL1通过增强BZR1结合
SAUR17启动子的能力,促使该转录复合体激活
SAUR17转录;BZR1下调泛素连接酶
EBF1(ein3-binding f-box 1)和
EBF2(ein3-binding f-box 2)的表达,维持EIN3和PIF3的稳定性。这些结果表明,BR通过整合光信号和乙烯调控植物暗形态建成
[20]。此外,植物特异性BLI(blister)蛋白在拟南芥中作为BR信号和暗形态建成的正向调节因子,影响植物生长发育。BLI通过BZR1促进BR响应基因的转录活性,并且BLI是BZR1介导暗形态建成所必需的组分
[21]。BLI与BZR1还可协同调控GAs合成基因的表达,正调控植物暗形态建成
[22]。
1.3 BR与生长素、乙烯协同调控植物根发育
根尖分生区的维持取决于植物激素之间的相互作用,其中分生细胞的数量取决于BR和生长素的相互作用
[9]。在拟南芥中,BR通过促进生长素合成并抑制其输出的双向作用,维持根尖分生区的状态
[23]。BR还抑制胞内运输小泡的靶向传递和降解,调节生长素输出蛋白PIN2(pinformed 2)的分布,影响生长素从根尖到伸长区的运输,从而调控根生长发育
[24-25]。此外,BR和生长素互作还能促进根尖分生组织的发育。BES1与
PIN7和
SHY2的启动子结合,上调
PIN7(pinformed 7)、下调
SHY2(short hypocotyl 2)的表达增加根分生组织的大小
[26]。
SHY2能被细胞分裂素正调控因子AHK3/ARR1(
Arabidopsis histidine kinases 3/
Arabidopsis response regulator 1)激活,抑制
PIN1、
PIN3和
PIN7的表达。BR通过与生长素协同、与细胞分裂素拮抗的平衡模型,调节根生长处于最适应环境的状态
[27]。
BR与生长素相互作用还能促进侧根(lateral roots,LR)的发育
[28]。拟南芥AUX/IAA(auxin/indoleacetic acids proteins)家族成员大多参与LR的生长,如IAA14、AXR3(auxin resistant 3)、IAA28、IAA19等
[29]。外源施加BR能显著诱导部分
AUX/IAA的表达,如
AXR3/IAA17、
AXR2/IAA7、
SLR/IAA14和
IAA28。在
bri1及BR生物合成突变体
det2中,
AXR3/IAA17的表达降低。过表达
AXR3/IAA17导致拟南芥根生长受到抑制,特别是侧根和根毛的生长
[30]。近期研究
[31]表明,低水平的外源BR通过增强生长素转运促进LR的形成,而较高浓度的BR则抑制LR的形成。BR诱导LR的形成受生长素转运抑制剂NPA(1-N-naphthylphthalamic acid)的抑制
[23]。此外,BZR1/2还能直接正调节
ARFs(auxin response factors)的表达,而ARF6和ARF8正调控不定根(adventitious roots,AR)的形成
[32]。
除了与生长素协同作用以外,BR还以浓度依赖的方式正向或负向调节乙烯生物合成,进而调控拟南芥根系生长
[33]。不同于BR通过稳定ACSs(1-AAnnocyclopropane-1-carboxylate synthases)来诱导乙烯的生物合成,BES1和BZR1与
ACS7、
ACS9和
ACS11的启动子相互作用并抑制其表达,促进根生长。BR合成缺陷突变体
det2-
9则表现出乙烯过度积累引起的短根表型
[34-35]。
1.4 BR与生长素、ABA协同调控植物叶片发育
植物叶片发育过程中,叶片生长轴的生长分别决定了叶片的厚度、宽度和长度
[36],从而决定了光合效率。在拟南芥中,生长素响应因子ARF6(auxin response factor 6)和ARF8能够激活BR合成关键基因
DWF4(dwarf 4)的表达。BR浓度升高后,促使叶片表皮细胞细胞壁果胶发生去甲基酯化,导致各向同性细胞壁松弛。计算模拟显示,各向同性细胞壁的松弛会促进细胞和器官沿基—顶轴定向生长,表明生长素和BR通过复杂的交互作用,共同调控叶片细胞的各向异性,从而决定叶片的最终形状
[37]。除生长素外,ABA与BR在水稻中也能互作调控幼苗叶倾角的展开
[38]。ABA调控转录因子ABI3诱导BR合成调控基因
OsGSR1(gast family gene in rice 1)的表达,有限度、非持续地激活BR合成,促进水稻幼苗叶倾角的展开
[39]。此外,BR与ABA互作还能调控叶片气孔运动,表现为BR增强ABA诱导的气孔关闭。BR通过CDL1(cdg1-like1)激酶、BRI1及BAK1等组分与OST1(open stomata1)互作介导气孔关闭,从而与ABA协同调控气孔运动的过程
[40]。
1.5 BR与生长素、细胞分裂素、SL、GAs、JA互作调控植物侧枝发育、分蘖及芽休眠
侧枝生长对植物叶片光捕获及作物产量等具有重要影响
[41]。在番茄(
Solanum lycopersicum)中,BR作为解除顶端优势的关键信号,通过整合其他植物激素和糖信号互作,促进侧芽活化和侧枝发生。解除顶端优势能促进侧芽BR及BZR1的积累。在此过程中,BR通过BZR1抑制侧芽中特异表达的
BRC1(branched 1)基因的表达,解除其对侧芽活化的抑制作用。抑制生长素或SL生物合成及外源细胞分裂素或蔗糖处理均可促进侧枝发生,同时促进侧芽中BR及BZR1的积累,而GAs负调节因子PRO(procera)缺失则导致侧枝发生受抑制。进一步研究
[42]发现,生长素、SL和GAs均抑制了细胞分裂素合成,而蔗糖则促进细胞分裂素合成。细胞分裂素信号转导途径的关键响应因子RR10(the action of the type-b response regulator 10)参与细胞分裂素诱导侧枝发生,并且RR10直接调控BR合成基因
DWF的表达促进侧芽中BR的积累。
水稻基因
FC1(fine culm1)及其拟南芥同源
BRC1是芽生长的“关键开关”。水稻SL诱导D53(dwarf 53)和OsBZR1降解,促进
FC1转录并抑制芽分蘖。拟南芥D53同源物SMXLs(suppressor of more axillary growth2-like)直接与BES1互作,促进BES1降解,从而提高
BRC1转录水平并抑制芽分枝
[43]。在梨(
Pyrus spp.)芽中,BR响应因子PpBZR2与
PpDAM3(dormancy-associated mads-box 3)启动子结合抑制其表达,促进芽休眠解除。同时,过表达
PpBZR2的梨芽中JA和GAs水平显著上调促进芽休眠解除
[44]。新近还发现,BR与JA、GAs互作网络正调控梨芽休眠解除。PpyBZR2和JA转录因子PpyMYC2(myelocytomatosis proteins 2)相互作用增强PpyMYC2对GA20氧化酶基因
PpyGA20OX1L1(gibberellin 20-oxidase)和
PpyGA20OX2L2的转录激活,最终导致GA
3水平增加并提前解除芽休眠
[45]。
2 BR与其他植物激素在生殖生长中的协同作用
2.1 BR与GAs、ABA协同调控植物开花
植物开花标志着由营养生长到生殖生长的转变,而BR则通过BZR1和BES1靶向调控开花。在拟南芥中,亲环蛋白CYP20-2(cyclophilin)通过脯氨酰顺反异构酶PPIase(peptidyl-prolyl
cis-trans isomerase)直接作用于BZR1脯氨酸残基导致BZR1构象改变并使其易于被磷酸化修饰而降解,这一过程促进了
FLD(flowering locus D)表达,进而抑制开花过程
[46]。小麦(
Triticum aestivum)TaCYP20-2除了调控BZR1构象外,更侧重于介导GAs途径核心组分DELLA蛋白的降解,从而导致开花延迟。由此推测,CYP20-2在进化过程中形成了其在双子叶和单子叶植物中对BR和GAs信号系统响应的不同偏好性,调控开花过程
[47]。
BR还能通过BES1诱导GAs生物合成基因表达发挥作用
[48]。在
bri1-
301中,内源GAs水平显著降低,在种子发芽、下胚轴伸长和开花时间方面均表现出明显缺陷。过表达GAs生物合成基因
GA20ox1能够恢复这些生长缺陷,包括
bri1-
301的晚花表型
[48-49]。研究
[50]表明,BES1介导的BR信号通过增加GAs的生物合成正调控植物开花。
bzr1-
1D和过表达
BES1-
L(BRI1-ethylmethylsulfone-suppressor 1-L)分别表现出晚花和早花表型。此外,在拟南芥和番茄中均发现BES1抑制ABA信号通路中转录因子
ABI3的表达促进植物开花
[51]。
2.2 BR与乙烯、细胞分裂素、ABA协同调控植物果实成熟
果实成熟过程中BR生物合成增强、代谢途径减弱,在果实中BR含量增加
[52]。过表达BR生物合成限速酶基因
SICYP90B3提高了番茄果实中乙烯含量,促进果实成熟
[53]。这可能是由于
SICYP90B3的表达解除了BR通路负调控因子SIBIN2对SIBZR1的抑制作用,进而激活乙烯生物合成基因
SIACO1、
SIACO3和类胡萝卜素生物合成限速酶基因
SIPSY1(phytoene synthase1)的表达,最终促进乙烯产生和类胡萝卜素积累,表明BR能与乙烯相互作用促进果实成熟
[54]。同样,BR作为果实成熟抑制剂在梨和苹果(
Malus pumila)经济作物中也发挥了重要作用。在梨成熟过程中,外施BR抑制了乙烯产生并延迟成熟,外施BR生物合成抑制剂则促进了乙烯产生并加速了果实成熟。研究
[52]发现,BR处理能够提高
PuBZR1基因的表达水平,PuBZR1通过负调控
PuERF2的表达,间接抑制乙烯生物合成关键基因
PuACO1(1-AAnnocyclopropane-1-carboxylate oxidase)和
PuACS1a的转录,从而减少乙烯产生并抑制果实成熟。
在种子成熟过程中,BR也扮演了重要角色。PPKL(protein phosphatases with kelch-like)家族是BR信号通路中的重要组分,包括BSU1、BSL1(BSU1-like protein 1)、BSL2、BSL3等成员
[55]。水稻PPKL1去磷酸化OsGSK3负调控BR信号传导。作为细胞分裂素通路抑制剂的PPKL1降低AHP2(authentic histidine phosphotransfer protein 2)向细胞分裂素响应因子RR21(response regulator 21)传递磷酸的效率,抑制水稻籽粒发育。由于PPKL1 D364位于蛋白N-端,其对细胞分裂素信号的抑制并不依赖于磷酸酶活性,暗示PPKL1可能介导了细胞分裂素与BR间的相互作用
[56]。在大豆中,ABA信号通路负调控因子PP2C-1(type 2C protein phosphatases-1)与GmBZR1直接互作,催化GmBZR1去磷酸化以增强GmBZR1活性,促进种子大小相关基因
SHB1(short hypocotyl under blue 1)、
AP2(apetala 2)和
ARF2(auxin response factor 2)等表达,促使胚细胞分裂和体积增大
[57-58]。
3 BR与其他植物激素共同调控植物胁迫响应
植物固着生长并持续暴露在不同环境刺激中。为了应对这些环境信号,植物进化出不同植物激素间的互作网络调控自身生长以适应环境变化
[59]。病原体诱导的SA信号通过调控植物病害抗性关键基因
NPR1(nonexpressor of pathogenesis-related genes1)激活BIN2。BIN2磷酸化TGA3(TGACG motif-binding Factor)形成NPR1-TGA3复合体。通过这种正反馈调节作用实现免疫信号级联放大,提升植物抗病性
[60]。BIN2还是BR和SA信号交叉互作的关键节点。SA能抑制BR介导的植物生长,而BR则可抑制SA诱导的
PR(pathogenesis related)基因表达,该过程受BIN2调控,表明BR和SA之间存在拮抗关系
[61]。BR和SA在调控植物冷胁迫响应中也起着重要作用。小麦SA在SA甲基转移酶TaSAMT1(SA methyltransferase)作用下转化为MeSA(methyl SA),增强小麦抗寒性。TaBZR1与组蛋白乙酰转移酶TaHAG1(histone acetyltransferase of the GNAT family 1)相互作用,在冷胁迫下通过增加组蛋白乙酰化水平来增强
TaSAMT1的转录,从而在小麦抗寒中发挥关键作用
[62-63]。BR还能和ABA协同响应低温并调控番茄生长发育,避免低温胁迫对果实产量和品质的影响
[64]。低温胁迫诱导番茄BR含量升高,抑制BIN2激酶活性及蛋白积累,进而降低BZR1的磷酸化程度,增强番茄低温抗性。同时,过表达BR合成基因
DWF或
BZR1能够促进低温下ABA合成关键基因
NCED1(nine-cis-epoxycarotenoid dioxygenase 1)的表达,增加ABA积累,提高番茄低温抗性
[65]。CBF/DREB1(C-repeat binding factor/DRE binding factor 1)转录级联效应在植物应对冷胁迫中发挥重要作用
[66]。BES1/BZR1可促进
CBF、ABA受体
PYL6(pyrabactin resistance 1-like 6)等基因的表达,正调控拟南芥耐寒性
[67]。在低温胁迫下,由NOS催化产生的NO是BR抑制ROS积累及激活抗氧化防御响应中重要的下游信号分子,对提高植物的抗寒性十分重要
[68]。
BR与乙烯还能协同调控植物对热胁迫的响应
[69]。植物耐热负调节因子
ERF49(ethylene responsive factors 49)是BZR1转录调控的靶基因。
ERF49过表达导致下游热激转录因子HSFA2(heat shock factor 2)、热响应诱导基因
DREB2A和热激蛋白HSPs(heat shock proteins)转录水平显著降低,从而提高植物对热胁迫的敏感度
[70-71]。此外,BR还参与植物对盐胁迫的响应。小麦
TaBZR1的表达受盐胁迫诱导显著上调。盐胁迫下TaBZR1直接结合ABA合成关键基因
TaNCED3启动子区并激活其表达,促进ABA的生物合成
[72]。TaBZR1还能激活ROS清除相关基因
TaGPX2(glutathione peroxidase 2)和
TaGPX3(glutathione peroxidase 3)的表达,促进盐胁迫下植物细胞内ROS的清除
[73]。
在干旱胁迫下,低浓度BR能够促进大豆叶片叶绿素增加,而高浓度BR导致大豆叶片发生损伤,但ABA可有效缓解损伤情况。因此,干旱胁迫下,喷施一定浓度的ABA和BR可有效缓解干旱胁迫对大豆生理代谢的影响
[74]。此外,水分胁迫导致葡萄(
Vitis vinifera)幼苗ROS显著增加。外源施加BR可以减轻水分胁迫对植物的损伤,降低H
2O
2含量和
的产生,提高了AsA-GSH(ascorbate-glutathione)循环的抗氧化剂含量和抗氧化酶活性
[75]。同时,还进一步增强了ABA生物合成相关基因
VviNCED1、
VviNCED2、
VviZEP及ABA信号传导关键基因
VviSnRK2.6、
VviPP2C4、
VviABF(ABRE binding factor 1)、
VviABF2的转录激活,表明在水分胁迫下BR与ABA协同促进植物生长
[76]。
4 展望
近年来,BR与其他植物激素互作调控植物生长发育的研究取得了一系列重要进展,主要集中在通过“交叉对话”调控植物营养生长、生殖生长及逆境响应3个方面(
图1),但仍然存在一些亟待解决的问题:(1)利用BR合成和代谢缺陷相关突变体,克隆得到一系列BR合成和代谢基因,从合成生物学角度明确了部分BR合成和代谢酶催化反应步骤,但仍需进一步完善BR代谢途径并明确其是否具有生物学普适性。(2)植物激素的信号转导途径不是孤立的,而是存在着复杂的相互联系,不同植物激素信号转导途径之间存在相互协同、对抗和因果等关系
[7]。植物激素间如何相互作用共同调控植物生长发育逐渐成为研究热点与难点。这些相互作用表面上看似是增加了植物调节作用的复杂性,但事实并非如此,不同植物激素信号间享用共同的信号元件意味着仅需较少的部件来转导多种植物激素信号。例如,SHY2是根分生组织发育中调节BR与生长素和CK互作网络的节点
[27]。然而,BR与其他植物激素还有哪些共同信号元件在调控植物生长发育中发挥作用仍需持续深入研究。(3)尽管已有研究初步揭示了BR与ABA、SA在植物抗病性、冷热胁迫和盐胁迫中的调控作用,但BR信号作为单一植物激素还参与了低碳胁迫、重金属胁迫等过程
[77-78]。例如,BR处理显著上调了弱光胁迫下一些酶的mRNA表达,促进碳同化作用,有效缓解了弱光对番茄光合作用的伤害
[79]。因此,BR与其他植物激素共同调控植物抗逆性的信号网络仅被揭示了很有限的一部分,仍需开展更多相关工作。
综上,关于BR与其他植物激素互作调控植物生长发育及胁迫响应的研究仍然处于不断深入探索的阶段。随着人们认识的深入和研究技术方法的进步,植物激素之间互作调控植物生长发育的规律、机理及一些本质属性将不断得以明晰。这不仅有助于更全面地理解植物生长发育的内在规律,还将为高效作物育种和农业生产提供重要思路。