神经肽参与调控神经病理性疼痛机制的研究进展

赵家硕 ,  张艳艳 ,  刘飞 ,  沈颉飞

国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (04) : 498 -506.

PDF (1369KB)
国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (04) : 498 -506. DOI: 10.7518/gjkq.2025057
综述

神经肽参与调控神经病理性疼痛机制的研究进展

作者信息 +

Research progress on neuropeptide involved in neuropathic pain

Author information +
文章历史 +
PDF (1401K)

摘要

口颌面神经病理性疼痛的病理机制复杂,目前仍缺乏持久有效的治疗手段,给患者生活带来沉重负担。神经肽,包括甘丙肽、降钙素基因相关肽、神经肽Y、催产素等,通过不同信号通路调控伤害性信号传导,在神经病理性疼痛的病理过程中发挥重要的调控作用。目前神经肽在口颌面神经病理性疼痛中的作用和机制研究相对不足,针对神经肽作为口颌面神经病理性疼痛的治疗靶点尚缺乏充分的临床证据。本文回顾了上述4种常见的神经肽在外周及中枢神经系统中调控神经病理疼痛涉及的分子信号通路机制,为探究其在口颌面神经病理性疼痛中的作用和机制研究提供新思路,为研发新型镇痛药提供有效策略。

Abstract

The pathological mechanisms of orofacial neuropathic pain are complex. Currently, the lack of long-lasting and effective clinical treatment drugs greatly burdens the lives of patients. Neuropeptides, including galanin, calcitonin gene-related peptide, neuropeptide Y, and oxytocin, among others, can regulate nociceptive transmission through different signaling pathways, thus playing a crucial role in the pathological processes of neuropathic pain. At present, the role and mechanism of neuropeptides in orofacial neuropathic pain are relatively insufficient, and there is a lack of sufficient clinical evidence regarding neuropeptides as therapeutic targets for orofacial neuropathic pain. This article summarizes mechanisms of neuropeptides in the peripheral and central nervous systems to provide new ideas for exploring their role and mechanisms in orofacial neuropathic pain, and to recommend effective strategies for developing new analgesic drugs.

Graphical abstract

关键词

神经肽 / 口颌面神经病理性疼痛 / 中枢神经系统 / 外周神经系统 / 信号通路

Key words

neuropeptides / orofacial neuropathic pain / central nervous system / peripheral nervous system / signa-ling pathways

引用本文

引用格式 ▾
赵家硕,张艳艳,刘飞,沈颉飞. 神经肽参与调控神经病理性疼痛机制的研究进展[J]. 国际口腔医学杂志, 2025, 52(04): 498-506 DOI:10.7518/gjkq.2025057

登录浏览全文

4963

注册一个新账户 忘记密码

根据国际疼痛研究协会(International Associa-tion for the Study of Pain,IASP)的定义,疼痛是一种与实际或潜在组织损伤或与这类损伤描述相关的不愉快的感觉和情感经历[1]。神经病理性疼痛(neuropathic pain,NP)是一种由神经系统损伤或异常引起的持续性疼痛,表现为异常的疼痛感知和传导,与实际组织损伤或炎症反应程度不相称[2]。NP可以由多种原因引起,包括神经损伤、炎症性疾病、神经退行性疾病等[3],给患者的工作和生活造成严重影响。口颌面部的NP主要由三叉神经系统损伤或疾病导致。目前NP的机制尚未完全阐明,临床治疗效果仍不稳定。
神经肽(neuropeptide)是一类由氨基酸组成的多肽生物活性分子,由多种神经元及胶质细胞分泌,具有传递神经信号和调节生理过程的作用。大多数神经肽信号通过G蛋白偶联受体(G protein-coupled receptor,GPCR)传递,在疼痛、情绪、食欲、睡眠等生理过程中发挥调节作用。近年来,众多文献报道了多种神经肽在NP的形成和发展过程中发挥的重要调控作用。本文对在疼痛相关调控区域内几种常见神经肽的分布表达、在外周和中枢神经系统中调控NP的机制进行综述,以期为口颌面NP的机制和治疗研究提供新思路。

1  NP的概述

1.1  NP的定义和特征

NP是一种由于躯体感觉神经损伤或功能障碍引发的疼痛[2],在人群中的发病率为7%~10%[4],主要表现为自发痛(在无外部刺激的情况下产生疼痛)、痛觉超敏(allodynia,非伤害性刺激引起疼痛)、痛觉过敏(hyperalgesia,伤害性刺激引起的疼痛程度加重)[5-7]。NP通常表现为持续存在或反复发作的慢性疼痛。依据诱发NP的病变发生的部位,可分为中枢性(与脊髓损伤相关的疼痛、脑卒中后疼痛、帕金森病相关性疼痛等)和外周性(三叉神经病理性疼痛、带状疱疹后神经痛等)[8]。目前,针对NP缺乏有效的治疗方案,许多一线疼痛治疗药物的疗效并不理想,因而NP的病理机制和治疗研究成为神经科学领域基础和临床研究的重要科学问题。

1.2  NP的病理机制

NP的病理机制尚未完全阐明,也是至今缺乏有效治疗方案的原因之一。目前相关研究[6-7,9-17]发现NP的发生和发展与神经末梢炎症物质释放,外周和中枢神经系统中神经元兴奋性增加、胶质细胞激活、神经元-胶质细胞交互对话,以及突触可塑性改变密切相关。组织损伤或伤害性刺激可诱导局部组织内初级传入末梢释放炎症介质,如降钙素基因相关肽(calcitonin gene related peptide,CGRP)和P物质(substance P,SP),增加血管通透性导致局部水肿,并使损伤的副产物如前列腺素、缓激肽、生长因子释放,使伤害性感受器敏化和兴奋[7]。这些物质作用于神经元上的受体,激活下游信号通路,如环磷酸腺苷/蛋白激酶A(cyclic adenosine monophosphate/protein kinase A,cAMP/PKA)信号通路和蛋白激酶C/二酰甘油(protein kinase C/diacylglycerol,PKC/DAG)信号通路等,可以增强疼痛[6]。神经损伤也可使神经元上的受体和离子通道改变,导致神经元兴奋性增加。如周围神经损伤可导致脊髓谷氨酸转运体下调,持续性激活代谢型谷氨酸受体(如代谢型谷氨酸受体2)和离子型谷氨酸受体,如N-甲基-D-天冬氨酸受体(N-methyl-D-spartate receptors,NMDAR)和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(α-amino-3-hydroxy-5-methyl-4-isoxazolepropion-icacid receptors,AMPAR),导致神经元兴奋性增加[6,9-10]。此外,背根节和轴突末端损伤部位周围Na+通道(如Nav1.3、Nav1.7和Nav1.8)的表达增加[7,11],瞬时受体电位香草醛亚家族1(transient receptor potential vanilloid 1,TRPV1)上调[12],可引起神经纤维异位放电。神经损伤后电压门控 Ca2+通道α2δ亚基在背根神经节内表达增加也可增加神经元兴奋性[13]。值得注意的是,神经损伤也可激活外周神经节内的卫星胶质细胞(satellite glial cells,SGC)以及中枢神经系统内的星形胶质细胞、小胶质细胞等胶质细胞,激活其中的丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、核因子-κB(nuclear factor‑κB,NF-κB)等信号通路,促进胶质细胞释放多种促炎细胞因子,作用于神经元上相应的受体,导致神经元兴奋性和突触可塑性的改变[14-17]

2  神经肽在NP中的作用和机制

在NP机制和治疗的探索中,越来越多的研究提示外周和中枢神经系统中的神经肽在调控NP的发生和发展中发挥着重要作用。本文重点综述几种重要的神经肽,包括甘丙肽(galanin,GAL)、CGRP、神经肽Y(neuropeptide Y,NPY)和催产素(oxytocin,OT)等在躯体和口颌面NP中的作用和机制。深入了解这些神经肽的功能和相互关系,有助于理解NP的病理生理机制,并为未来开发基于这些神经肽治疗NP的新策略提供理论基础。

2.1  GAL

GAL是一种由 29个氨基酸组成的神经肽(人体中为30个氨基酸组成)[18]。GAL在外周神经系统和中枢神经系统中均有表达。在外周神经系统,大鼠背根神经节(dorsal root ganglia,DRG)内有不到5%的神经元表达GAL[19]。正常情况下,GAL在伤害性感受中的作用较小。在NP的啮齿动物模型中,GAL的抗伤害性作用增强[20]。GAL基因敲除动物对卡拉胶引起的炎症和周围神经损伤后的伤害性刺激都有高度反应[21-22],而在GAL过度表达的小鼠中观察到相反的情况——这些小鼠在周围神经损伤后表现出痛觉过敏减弱和恢复加快[23]

GAL主要通过甘丙肽受体(galanin receptors,GALR)发挥作用。GALR共有3种类型,分别是GALR1、GALR2、GALR3[24],在外周神经系统和中枢神经系统均有表达[25]。目前关于GAL激活不同GALR在疼痛中发挥的具体作用尚未得到明确研究。GALR1主要发挥镇痛作用,其激活会降低大鼠对机械刺激的敏感度,而失活或敲除会减弱GAL的抗伤害作用。GALR1的激活可通过抑制PKA在神经损伤中发挥镇痛作用[26-27]。GALR2在疼痛中的作用尚不明确,向正中神经慢性压迫性损伤模型大鼠足底注射GALR2激动剂,能够使机械伤害性反应增强,而GALR2抑制剂则会产生相反效果[28],这提示GALR2的激活主要发挥促痛作用。另有研究[29]同样发现GALR2可能发挥促痛作用,给予 GAL2-11(一种 GALR 2/3激动剂)可使机械性伤害反应的阈值降低,表明GALR2的激活会增强机械刺激诱发的疼痛行为。GALR2的激活能够抑制Ca2+通道电流[30],导致细胞内Ca2+含量增加,进一步激活钙离子/钙调素依赖的蛋白激酶Ⅱ[calcium-calmodulin(CaM)-dependent protein kinase Ⅱ,CaMKⅡ][31]和MAPK[32],能够调节伤害感受和神经可塑性。GALR2激活所引起的相反的疼痛反应可能是由于所用的GALR2激动剂含量不同所致。低浓度的GAL通过激活Gq通路,降低机械痛阈并增加机械初级传入伤害感受器的活动,而高浓度的GAL通过激活Gi/o通路抑制伤害感受器活动[33]。即随着GAL表达从低到高,GAL信号通路从Gq通路(低GAL 浓度)切换到Gi/o通路(高GAL浓度),从促伤害效应转变为抗伤害效应。这种切换有助于在周围神经损伤早期增强疼痛感知,引发损伤警报,并在损伤后期减轻疼痛感知,避免过度疼痛对身体造成伤害。与GALR1和GALR2相比,GALR3在中枢神经系统中的分布相当有限,可能影响炎症过程,发挥抗炎作用[34]。总的来说,在NP中,不同浓度的GAL可能通过激活不同GALR来发挥不同的疼痛效应,其具体机制尚需进一步研究。

2.2  CGRP

CGRP是由37个氨基酸残基组成的神经肽,是降钙素基因mRNA选择性剪接的产物[35]。CGRP及其受体广泛分布于外周和中枢痛觉调控通路[36],在炎症和NP条件下表达上调。在一项神经压迫和椎间盘突出的动物模型研究[37]中发现:CGRP在初级传入神经末梢中上调。鞘内注射CGRP可导致机械性痛觉过敏,而鞘内注射CGRP受体拮抗剂可使相关疼痛行为减弱[38],这表明CGRP在NP中发挥促痛作用。

CGRP可以诱导外周敏化和中枢敏化[39]。在外周神经系统,组织损伤或炎症介质的释放可以促使局部神经元释放CGRP,CGRP通过与其受体结合,可以促进血管扩张,使血管通透性和炎症细胞的浸润增加,从而促进外周敏化的发生[40-41]。CGRP也可通过增强河豚毒素抗性Na+电流来增强神经元兴奋性[42]。CGRP可以触发一系列反馈机制,包括释放NO和细胞因子等信号分子,这些信号分子进一步促进了CGRP的合成和释放,形成正反馈循环,从而增强神经元的敏感性,导致疼痛加剧[43]。在中枢神经系统,CGRP可促进AMPAR转运到细胞表面,并增强SP对AMPAR和NMDAR的敏化作用[44]。除了作用于谷氨酸受体外,CGRP还与脊髓中谷氨酸囊泡转运蛋白2(vesicular glutamate transporter 2,VGLUT2)协同作用,从而促进小鼠NP的发生和维持[45-46]。总之,CGRP 可以作为促进调节剂来增强谷氨酸能信号,促进突触前Ca2+通道的激活,增加突触后NMDAR和AMPAR信号传入中枢。

2.3  NPY

NPY是一种含有36个氨基酸残基的神经肽,在中枢和外周神经系统中分布广泛 [47]。在DRG中NPY表达于极少数小的初级传入神经元[48-49]。周围神经损伤后,NPY在支配脊髓背角的初级感觉神经元的大、中直径胞体中的表达显著上调。在NP的动物模型中,鞘内注射NPY可缓解NP[50]

NPY通过作用于其受体,尤其是Y1R和Y2R,在伤害性信号调节中发挥镇痛作用[49]。Y1R和Y2R均在CGRP阳性的神经元中表达[51]。Naveilhan等[52]构建了靶向敲除Y1R的小鼠模型,这些模型小鼠对急性热刺激和机械刺激均表现出超敏反应,由此提示Y1R在NPY介导的镇痛效果中发挥作用。同样,向坐骨神经结扎模型大鼠脊髓中注射Y2R拮抗剂也可逆转NPY的抗伤害作用[53],其程度与Y1R受体拮抗剂相同。NPY 受体通常与 Gi/o蛋白和多个下游信号传导通路偶联,包括抑制腺苷酸环化酶(adenylate cyclase,AC)、激活MAPK、调控细胞Ca2+水平以及开放G蛋白偶联内向整流K+通道(G protein-gated inwardly rectifying potas-sium channel,GIRK)[49]。突触后Y1R可激活13种L型Ca2+通道[54],而Y2R可能通过释放细胞内Ca2+和激活PKC来提高神经元兴奋性[53]。通常抑制性的 γ-氨基丁酸(γ-aminobutyric acid,GABA)神经传递在神经性疼痛期间会变得兴奋。在NP条件下,GABA能抑制性中间神经元中Y1R的潜在表达和激活,可能会阻断上述异常的GABA能依赖性兴奋,从而发挥镇痛作用[55]。目前认为Y2R介导NPY在突触前抑制中枢末梢,而Y1R介导NPY在突触后抑制脊髓中间神经元。大鼠脊髓切片的全细胞膜片钳记录表明:灌注NPY可抑制兴奋性神经递质的传递,灌注NPY或Y1R选择性激动剂可持续地在脊髓中间神经元中产生外向电流和膜超极化,Y1R选择性拮抗剂可阻断这种外向电流和膜超极化[55-56]。此外,Y2R选择性激动剂能抑制抗河豚毒素(tetradotoxin,TTC)微型兴奋性突触后电流(miniature excitatory postsynaptic currents,mEPSCs)的频率,但不能抑制其幅度。同样,Y2R选择性拮抗剂能阻断NPY本身抑制mEPSC频率的能力[55]。综上,NPY通过与Y1R和Y2R结合,在脊髓伤害性信号传递中发挥动态平衡作用。

2.4  OT

OT是一种由9个氨基酸残基组成的神经肽,分布于中枢和外周神经系统[57]。OT参与机体多种功能的调控,如镇痛作用、抗炎症反应、应激调节等。OT必须达到神经系统相应部位并激活其主要靶点OT受体(oxytocin receptor,OTR),组成催产素系统发挥作用[58]。OT主要发挥镇痛作用。在正常状态或病理状态下,如NP模型或者炎性痛模型,给予动物一定剂量催产素可有效增加其疼痛阈值[59]

目前OT的镇痛机制尚不清楚。在外周,全细胞膜片钳实验结果表明:OT显著降低了DRG神经元的三磷酸腺苷(adenosine triphosphate,ATP)激活电流,这种抑制作用由OT结合OTR激活cAMP/PKA通路和胞内Ca2+浓度增高介导。此外,OT通过增加外向电流和诱发膜超极化来降低大鼠DRG神经元的兴奋性。OT的外周镇痛作用可能通过DRG神经元中Ca2+/nNOS/NO/K-ATP途径的活化介导[60-62]。此外,OT可激活瞬时受体电位TRPV1通道,而TRPV1通道激活可导致第Ⅱ层神经元中自发性兴奋性突触后电位(spontaneous excitatory postsynaptic potential,sEPSC)频率增加和单突触诱发的初级传入C纤维兴奋性突触后电位(excita-tory postsynaptic potential,EPSC)振幅降低[63]。以上研究表明:在成年大鼠DRG神经元中OT通过不同的途径介导其镇痛效应。而在中枢系统,OT通过激活抑制性GABA能中间神经元,阻断Aδ和C传入神经的伤害性传导[64-65]。综上,OT可通过多种途径调节疼痛敏感性,如在外周直接抑制接受痛觉信息的传入神经元,在中枢接受下丘脑催产素神经元的直接投射,以及兴奋脊髓的抑制性GABA能中间神经元。

GAL、CGRP、NPY和OT参与介导NP的分子生物学机制模式图见图1。总体来说,不同的神经肽与不同的G蛋白偶联,激活不同的信号通路,从而发挥对神经病理性疼痛不同的调控作用。偶联Gi/o亚型的G蛋白偶联受体,如GALR1、神经肽Y受体neuropeptide Y receptor,NPYR,可通过抑制细胞内一系列信号通路,抑制神经元兴奋性,从而抑制疼痛;而偶联Gq/11及G5亚型的G蛋白偶联受体,如OTR、CGRP,可通过激活AC、促进磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5-biphosphate,PIP2)水解,增强神经元兴奋性,从而促进疼痛。

3  神经肽调控口颌面NP的病理机制

口颌面NP主要是三叉神经的一个或多个分支所支配的区域反复出现自发性疼痛、痛觉超敏或痛觉过敏[66],其原因主要有外伤、颌面外科手术等侵入性牙科治疗造成的三叉神经分支损伤。在口颌面部发生的疼痛通过三叉神经轴突及位于三叉神经节(trigeminal ganglion,TG)内的胞体,将疼痛信号传递到位于脑干的三叉神经脊束核,然后通过丘脑投射到大脑皮层躯体感觉区[67]。三叉神经损伤可引起三叉神经通路上的神经元兴奋性改变、胶质细胞功能异常、神经元和胶质细胞间发生交互对话,进而导致口颌面NP[68-69]。其中,神经元和胶质细胞异常合成和释放神经肽是调控三叉神经伤害性信号传递的重要信号分子[70]

TG内的神经元可分泌多种不同的神经肽,包括CGRP、SP等,充当神经递质或神经调节剂,参与伤害性信号传递[71]。CGRP是TG中最丰富的肽类神经递质,主要在TG神经元中表达,在三叉神经病理性疼痛模型的三叉神经传入敏化中发挥作用[72]。神经损伤后,CGRP可通过自分泌直接作用于神经元上的CGRP受体,启动cAMP信号级联反应,通过PKA和MAPK途径调节自身基因表达(如激活P2X3基因),使神经元释放多种细胞因子,增强神经元兴奋性。与常规外周敏化不同的是,TG内神经元释放的CGRP可以通过旁分泌方式作用于SGC,激活SGC内的NO,释放脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)和促炎因子,而这些分子又可与CGRP 建立旁分泌正反馈,SGC与神经元之间发生交互对话,刺激神经元促进其表达P2X3、CGRP和CGRP受体,增加TG内神经元兴奋性[71-73]。在三叉神经脊束核中,CGRP可激活突触前Ca+通道,促进谷氨酸能兴奋性突触传递,增加三叉神经脊束核中神经元的兴奋性[71]。SP由TG神经元合成分泌,TG神经元和SGC均表达其受体神经激肽-1受体(neurokinin-1 receptor,NK-1R),在神经病理性疼痛条件下,SP可激活神经元及SGC上的NK-1受体,导致SGC中胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)表达上调,被激活的SGC可通过ERK和P38-MAPK通路使细胞因子如IL-1β、TNF-α释放增加,进一步作用于神经元上的受体,促进神经元兴奋性[74]

4  神经肽对NP的治疗潜力

目前,药物治疗是治疗NP的主要方法,但经典镇痛药对神经性疼痛的治疗效果较差,且长期服用会引起许多不良反应[75-76],因此NP的临床治疗仍然面临着巨大的挑战[77]。由于神经肽参与调控NP,因此靶向调控神经肽-GPCR通路是治疗NP的潜在治疗策略。目前,一些经FDA批准的抗CGRP单克隆抗体药物如erenumab[一种靶向 CGRP 受体降钙素受体样受体/受体活性修饰蛋白1(calcitonin receptor-like receptor/receptor activity modifying protein 1,CLR/RAMP1)亚基的完全人源单克隆抗体]、galcanezumab(一种靶向CGRP配体的人源单克隆抗体)或 fremanezumab(一种靶向CGRP配体的人源单克隆抗体)在治疗偏头痛方面有效[78],但在减轻外周NP方面还需进一步研究[79]。GALR2和NPY受体的激动作用可在许多临床前模型中减轻疼痛,已被认为是调节疼痛的潜在且新颖的机制,国际基础与临床药理学联合会/英国药理学会(International Union of Basic and Clinical Pharmacology/British Pharmacological So-ciety,IUPHAR/BPS)药理学指南总结了已报道的GALR2和NPY Y1R肽激动剂和拮抗剂的综合列表及其相对效力[80],但临床前实验使用的肽模拟物激动剂需要中枢给药且半衰期较短,因此不适合长期使用,目前仍缺乏临床阶段的实验来确定其镇痛效应[81]。通过稳定化修饰或先进的给药系统(如纳米颗粒、细胞外囊泡),可以克服肽类模拟药物的缺点[77]。总之,神经肽及其受体有望成为治疗NP的有效靶标,但如何实现其从临床前实验到临床应用仍需进一步研究。

5  小结和展望

神经多肽及其受体在调控NP信号传导和处理中扮演着重要角色,随着研究的深入,多种神经多肽受体在镇痛过程中的作用机制被逐步揭示。目前关于神经肽调控NP的研究仍存在以下局限性:1)参与调控NP的神经肽众多,仍有许多神经肽的调控功能未被发掘和研究;2)现阶段已被证实对NP具有调控作用的神经肽,其外周及中枢作用机制、各神经多肽直接相互作用相互协调的机制尚未研究透彻,未来仍需进一步研究;3)多种参与调控NP的神经肽中,具体哪一种或几种多肽占据主要调控地位尚未清楚,未来需要更多研究,以在临床前水平确认更为有效的药物作用靶点;4)目前针对口颌面部NP的发生机制及其与躯体NP的不同之处尚缺乏更深层次的研究,未来需要更多针对口颌面部NP的研究,确定有效治疗方法,改善口腔患者预后。总体来说,随着技术手段的提升,神经肽镇痛治疗的前景广阔,有望为临床提供更个性化、更高效的疼痛管理方案。

参考文献

[1]

Treede RD, Rief W, Barke A, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11)[J]. Pain, 2019, 160(1): 19-27.

[2]

Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain[J]. Pain, 2019, 160(1): 53-59.

[3]

Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment[J]. Physiol Rev, 2021, 101(1): 259-301.

[4]

Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain[J]. Nat Rev Dis Primers, 2017, 3: 17002.

[5]

Alles SRA, Smith PA. Etiology and pharmacology of neuropathic pain[J]. Pharmacol Rev, 2018, 70(2): 315-347.

[6]

Yam MF, Loh YC, Tan CS, et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation[J]. Int J Mol Sci, 2018, 19(8): 2164.

[7]

Cohen SP, Mao JR. Neuropathic pain: mechanisms and their clinical implications[J]. BMJ, 2014, 348: f7656.

[8]

Crawford LK, Caterina MJ. Functional anatomy of the sensory nervous system: updates from the neuroscience bench[J]. Toxicol Pathol, 2020, 48(1): 174-189.

[9]

Cui CX, Liu HY, Yue N, et al. Research progress on the mechanism of chronic neuropathic pain[J]. IBRO Neurosci Rep, 2023, 14: 80-85.

[10]

Miller KE, Hoffman EM, Sutharshan M, et al. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms[J]. Pharmacol Ther, 2011, 130(3): 283-309.

[11]

Levinson SR, Luo SJ, Henry MA. The role of so-dium channels in chronic pain[J]. Muscle Nerve, 2012, 46(2): 155-165.

[12]

Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain[J]. Prog Mol Biol Transl Sci, 2015, 131: 73-118.

[13]

Liu YN, Wang KW. Exploiting the diversity of ion channels: modulation of ion channels for therapeutic indications[J]. Handb Exp Pharmacol, 2019, 260: 187-205.

[14]

Cheng T, Xu ZL, Ma XQ. The role of astrocytes in neuropathic pain[J]. Front Mol Neurosci, 2022, 15: 1007889.

[15]

Liu F, Zhang YY, Song N, et al. GABAB receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: role of NF‑κB and MAPK signaling pathways[J]. Brain Res Bull, 2019, 149: 240-250.

[16]

Zhang YY, Song N, Liu F, et al. Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain[J]. Int J Oral Sci, 2019, 11(3): 24.

[17]

Zhang YY, Song N, Liu F, et al. Activation of the RAS/B-RAF-MEK-ERK pathway in satellite glial cells contributes to substance p-mediated orofacial pain[J]. Eur J Neurosci, 2020, 51(11): 2205-2218.

[18]

Tatemoto K, Rökaeus A, Jörnvall H, et al. Galanin-a novel biologically active peptide from porcine intestine[J]. FEBS Lett, 1983, 164(1): 124-128.

[19]

Ch’ng JL, Christofides ND, Anand P, et al. Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-contai-ning neuronal pathways to injury[J]. Neuroscience, 1985, 16(2): 343-354.

[20]

Liu F, Yajima T, Wang M, et al. Effects of trigeminal nerve injury on the expression of galanin and its receptors in the rat trigeminal ganglion[J]. Neuropeptides, 2020, 84: 102098.

[21]

Hulse R, Wynick D, Donaldson LF. Characterization of a novel neuropathic pain model in mice[J]. Neuroreport, 2008, 19(8): 825-829.

[22]

Kerr BJ, Gupta Y, Pope R, et al. Endogenous galanin potentiates spinal nociceptive processing fo-llowing inflammation[J]. Pain, 2001, 93(3): 267-277.

[23]

Pope RJ, Holmes FE, Kerr NC, et al. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice[J]. Mol Pain, 2010, 6: 67.

[24]

Fonseca-Rodrigues D, Almeida A, Pinto-Ribeiro F. A new gal in town: a systematic review of the role of galanin and its receptors in experimental pain[J]. Cells, 2022, 11(5): 839.

[25]

Šípková J, Kramáriková I, Hynie S, et al. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions[J]. Physiol Res, 2017, 66(5): 729-740.

[26]

Constantin S, Wray S. Galanin activates G protein gated inwardly rectifying potassium channels and suppresses kisspeptin-10 activation of GnRH neurons[J]. Endocrinology, 2016, 157(8): 3197-3212.

[27]

Xu SL, Li J, Zhang JJ, et al. Antinociceptive effects of galanin in the nucleus accumbens of rats[J]. Neurosci Lett, 2012, 520(1): 43-46.

[28]

Chen SH, Lue JH, Hsiao YJ, et al. Elevated galanin receptor type 2 primarily contributes to mechanical hypersensitivity after median nerve injury[J]. PLoS One, 2018, 13(6): e0199512.

[29]

Hulse RP, Donaldson LF, Wynick D. Differential roles of galanin on mechanical and cooling respon-ses at the primary afferent nociceptor[J]. Mol Pain, 2012, 8: 41.

[30]

Alier KA, Chen YS, Sollenberg UE, et al. Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin[J]. Pain, 2008, 137(1): 138-146.

[31]

Li MN, Zhang XM, Li CY, et al. Galanin receptor 2 is involved in galanin-induced analgesic effect by activating PKC and CaMKⅡ in the nucleus accumbens of inflammatory pain rats[J]. Front Neurosci, 2020, 14: 593331.

[32]

Narváez M, Millón C, Borroto-Escuela D, et al. Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions[J]. Brain Struct Funct, 2015, 220(4): 2289-2301.

[33]

Yu M, Fang PH, Wang H, et al. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications[J]. Peptides, 2020, 134: 170404.

[34]

Botz B, Kemény Á, Brunner SM, et al. Lack of galanin 3 receptor aggravates murine autoimmune arthritis[J]. J Mol Neurosci, 2016, 59(2): 260-269.

[35]

Amara SG, Jonas V, Rosenfeld MG, et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products[J]. Nature, 1982, 298(5871): 240-244.

[36]

Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.

[37]

Kimura S, Sakuma Y, Suzuki M, et al. Evaluation of pain behavior and calcitonin gene-related peptide immunoreactive sensory nerve fibers in the spinal dorsal horn after sciatic nerve compression and application of nucleus pulposus in rats[J]. Spine, 2014, 39(6): 455-462.

[38]

Nitzan-Luques A, Minert A, Devor M, et al. Dynamic genotype-selective “phenotypic switching” of CGRP expression contributes to differential neuropathic pain phenotype[J]. Exp Neurol, 2013, 250: 194-204.

[39]

Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine[J]. Pain, 2017, 158(4): 543-559.

[40]

Bernstein C, Burstein R. Sensitization of the trige-minovascular pathway: perspective and implications to migraine pathophysiology[J]. J Clin Neurol, 2012, 8(2): 89-99.

[41]

Bonura A, Brunelli N, Marcosano M, et al. Calcitonin gene-related peptide systemic effects: embra-cing the complexity of its biological roles-a narrative review[J]. Int J Mol Sci, 2023, 24(18): 13979.

[42]

Marvizón JC, Pérez OA, Song B, et al. Calcitonin receptor-like receptor and receptor activity modi-fying protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing o-pioids and adrenergic alpha2C receptors[J]. Neuros-cience, 2007, 148(1): 250-265.

[43]

Labastida-Ramírez A, Caronna E, Gollion C, et al. Mode and site of action of therapies targeting CGRP signaling[J]. J Headache Pain, 2023, 24(1): 125.

[44]

Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology[J]. J Neurosci, 2015, 35(17): 6619-6629.

[45]

Rogoz K, Andersen HH, Kullander K, et al. Glutamate, substance P, and calcitonin gene-related peptide cooperate in inflammation-induced heat hyperal-gesia[J]. Mol Pharmacol, 2014, 85(2): 322-334.

[46]

Rogoz K, Andersen HH, Lagerström MC, et al. Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons[J]. J Neurosci, 2014, 34(42): 14055-14068.

[47]

Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide[J]. Proc Natl Acad Sci U S A, 1982, 79(18): 5485-5489.

[48]

Magnussen C, Hung SP, Ribeiro-da-Silva A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat mo-del of neuropathic pain[J]. Mol Pain, 2015, 11: 31.

[49]

Diaz-delCastillo M, Woldbye DPD, Heegaard AM. Neuropeptide Y and its involvement in chronic pain[J]. Neuroscience, 2018, 387: 162-169.

[50]

Smith PA, Moran TD, Abdulla F, et al. Spinal mecha-nisms of NPY analgesia[J]. Peptides, 2007, 28(2): 464-474.

[51]

Zhang X, Shi T, Holmberg K, et al. Expression and regulation of the neuropeptide Y Y2 receptor in sensory and autonomic ganglia[J]. Proc Natl Acad Sci U S A, 1997, 94(2): 729-734.

[52]

Naveilhan P, Hassani H, Lucas G, et al. Reduced antinociception and plasma extravasation in mice la-cking a neuropeptide Y receptor[J]. Nature, 2001, 409(6819): 513-517.

[53]

Yan WH, Liu WC, Wu JL, et al. Neuropeptide Y in the amygdala contributes to neuropathic pain-like behaviors in rats via the neuropeptide Y receptor type 2/mitogen-activated protein kinase axis[J]. Bio-engineered, 2022, 13(4): 8101-8114.

[54]

Acton D, Ren XY, di Costanzo S, et al. Spinal neuropeptide Y1 receptor-expressing neurons form an essential excitatory pathway for mechanical itch[J]. Cell Rep, 2019, 28(3): 625-639.e6.

[55]

Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch[J]. Prog Neurobiol, 2021, 196: 101894.

[56]

Nelson TS, Sinha GP, Santos DFS, et al. Spinal neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic target for the alleviation of neuropathic pain[J]. Proc Natl Acad Sci U S A, 2022, 119(46): e2204515119.

[57]

Eckstein M, Almeida de Minas AC, Scheele D, et al. Oxytocin for learning calm and safety[J]. Int J Psychophysiol, 2019, 136: 5-14.

[58]

Tzabazis A, Mechanic J, Miller J, et al. Oxytocin receptor: expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders[J]. Cephalalgia, 2016, 36(10): 943-950.

[59]

Li YX, Li JH, Guo Y, et al. Oxytocin inhibits hindpaw hyperalgesia induced by orofacial inflammation combined with stress[J]. Mol Pain, 2022, 18: 17448069221089591.

[60]

Kemenesi-Gedei PB, Csabafi KA, Kis G. Inflammatory orofacial pain activates peptidergic neurons and upregulates the oxytocin receptor expression in trigeminal ganglion[J]. Biomedicines, 2023, 11(9): 2419.

[61]

Gong L, Gao F, Li J, et al. Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca2+/nNOS/NO/KATP pathway[J]. Neuroscience, 2015, 289: 417-428.

[62]

Kumamoto E. Cellular mechanisms for antinociception produced by oxytocin and orexins in the rat spinal lamina Ⅱ-comparison with those of other endo-genous pain modulators[J]. Pharmaceuticals (Basel), 2019, 12(3): 136.

[63]

Nersesyan Y, Demirkhanyan L, Cabezas-Bratesco D, et al. Oxytocin modulates nociception as an agonist of pain-sensing TRPV1[J]. Cell Rep, 2017, 21(6): 1681-1691.

[64]

Yang LN, Chen K, Yin XP, et al. The comprehensive neural mechanism of oxytocin in analgesia[J]. Curr Neuropharmacol, 2022, 20(1): 147-157.

[65]

Thakur P, Shrivastava R, Shrivastava VK. Effects of exogenous oxytocin and atosiban antagonist on GABA in different region of brain[J]. IBRO Rep, 2019, 6: 185-189.

[66]

Pigg M, Nixdorf DR, Law AS, et al. New international classification of orofacial pain: what is in it for endodontists[J]. J Endod, 2021, 47(3): 345-357.

[67]

Bonomini F, Favero G, Castrezzati S, et al. Role of neurotrophins in orofacial pain modulation: a review of the latest discoveries[J]. Int J Mol Sci, 2023, 24(15): 12438.

[68]

Bista P, Imlach WL. Pathological mechanisms and therapeutic targets for trigeminal neuropathic pain[J]. Medicines (Basel), 2019, 6(3): 91.

[69]

Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in hea-dache[J]. Cephalalgia, 2019, 39(13): 1661-1674.

[70]

Nagakura Y, Nagaoka S, Kurose T. Potential mole-cular targets for treating neuropathic orofacial pain based on current findings in animal models[J]. Int J Mol Sci, 2021, 22(12): 6406.

[71]

Messlinger K, Balcziak LK, Russo AF. Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators[J]. J Neural Transm, 2020, 127(4): 431-444.

[72]

Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond[J]. Physiol Rev, 2023, 103(2): 1565-1644.

[73]

Haanes KA, Labastida-Ramírez A, Blixt FW, et al. Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models[J]. Cephalalgia, 2019, 39(11): 1421-1434.

[74]

Starnowska-Sokół J, Przewłocka B. Multifunctional opioid-derived hybrids in neuropathic pain: preclinical evidence, ideas and challenges[J]. Molecules, 2020, 25(23): 5520.

[75]

Szok D, Tajti J, Nyári A, et al. Therapeutic approaches for peripheral and central neuropathic pain[J]. Behav Neurol, 2019, 2019: 8685954.

[76]

Bannister K, Sachau J, Baron R, et al. Neuropathic pain: mechanism-based therapeutics[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 257-274.

[77]

Tajti J, Szok D, Csáti A, et al. Exploring novel therapeutic targets in the common pathogenic factors in migraine and neuropathic pain[J]. Int J Mol Sci, 2023, 24(4): 4114.

[78]

Krishnaswamy R, Malik BH, Khan S, et al. Anti-CGRP monoclonal antibodies: breakthrough in migraine therapeutics[J]. Prog Neurol Psychiatry, 2019, 23(3): 26-33.

[79]

Kang SA, Govindarajan R. Anti-calcitonin gene-related peptide monoclonal antibodies for neuropathic pain in patients with migraine headache[J]. Muscle Nerve, 2021, 63(4): 563-567.

[80]

Harding SD, Armstrong JF, Faccenda E, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2024[J]. Nucleic Acids Res, 2024, 52(D1): D1438-D1449.

[81]

Rich K, Rehman S, Jerman J, et al. Investigating the potential of GalR2 as a drug target for neuropathic pain[J]. Neuropeptides, 2023, 98: 102311.

基金资助

AI Summary AI Mindmap
PDF (1369KB)

326

访问

0

被引

详细

导航
相关文章

AI思维导图

/