改进无模型自适应的多智能体聚类一致性控制

周仲成, 魏文军, 刘艳浩, 王洁

兰州交通大学学报 ›› 2025, Vol. 44 ›› Issue (05) : 126 -135.

PDF
兰州交通大学学报 ›› 2025, Vol. 44 ›› Issue (05) : 126 -135.

改进无模型自适应的多智能体聚类一致性控制

    周仲成, 魏文军, 刘艳浩, 王洁
作者信息 +

Author information +
文章历史 +
PDF

摘要

为解决一类有向拓扑结构下模型未知的非线性多智能体系统的聚类一致性问题,考虑到传统无模型自适应控制(MFAC)算法中存在的收敛速度慢等问题,提出了一种基于梯度下降的无模型聚类一致性控制算法。首先,在无模型算法中引入自适应矩估计(adaptive moment estimation,Adam)梯度下降优化方法,利用梯度的矩估计自适应地调整学习率并更新MFAC中的伪偏导数,加快并提高了模型的准确性。然后,在系统拓扑结构和聚类耦合强度约束下定义多智能体聚类误差。在此基础上,设计了基于Adam-MFAC的多智能体聚类一致性控制协议。此外,对Adam-MFAC方法的稳定性和收敛性进行了分析和证明。最后,分别考虑了具有固定拓扑和切换拓扑的系统,对所提出的方法进行仿真,证明了所提出的控制策略在多智能体聚类一致性问题上的有效性和优越性。

关键词

多智能体系统 / 无模型自适应控制 / 梯度下降法 / 聚类一致性 / 自适应矩估计

Key words

引用本文

引用格式 ▾
改进无模型自适应的多智能体聚类一致性控制[J]. 兰州交通大学学报, 2025, 44(05): 126-135 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

50

访问

0

被引

详细

导航
相关文章

AI思维导图

/