基于铈基金属有机骨架材料UiO-66-(COOH)2构建的荧光法用于检测SO23 -
龚文朋 , 周林楠
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 22 -30.
基于铈基金属有机骨架材料UiO-66-(COOH)2构建的荧光法用于检测SO23 -
Fluorescent Detection of Sulfite Ions(SO23 -) Based on Cerium-functionalized Metal-organic Framework UiO-66-(COOH)2
构建了一种基于金属有机骨架(MOF)材料Ce-UiO-66-(COOH)2的荧光策略, 用于检测SO-. 首先通过溶剂热法, 以均苯四甲酸为有机配体、 Ce4+为中心离子合成了Ce-UiO-66-(COOH)2材料, 并采用X射线衍射(XRD)、 红外光谱(IR)、 X射线光电子能谱(XPS)和扫描电子显微镜(SEM)等表征手段确认了其结构特征. 在Ce-UiO-66-(COOH)2的催化作用下, SO-与苯甲酸组成的反应体系中, SO-被催化转化为硫酸根自由基(SO-), 进而诱导苯甲酸转化为具有荧光特性的2-羟基苯甲酸(水杨酸), 从而实现对SO-的定量检测. 通过荧光光谱和电子自旋共振谱(ESR)验证了该检测过程的机理. 考察了反应时间、 温度、 MOF材料用量及苯甲酸浓度等因素对检测性能的影响, 在优化的条件下获得40~120 mmol/L的线性检测范围, 检出限达8.3 μmol/L. 该方法对常见无机阴离子表现出良好的抗干扰性能, 可应用于雨水和自来水样品中SO-的定量检测.
A fluorescence strategy was constructed based on the metallic organic framework Ce-UIO-66-(COOH)2 to detect SO-. Firstly, under solvothermal conditions, the Ce-UIO-66-(COOH)2 was synthesized using homophthallic acid and Ce4+ as the organic ligand and central ion. The structure was characterized by X-ray diffraction(XRD), infrared spectroscopy(IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and energy dispersive spectroscopy(EDS). Employing a reaction system using Ce-UIO-66-(COOH)2, SO- and benzoic acid, under the catalysis of Ce-UiO-66-(COOH)2, the SO- was conversed to sulfate radical SO-, and then induced benzoic acid to transform into fluorescent molecule 2-hydroxybenzoic acid(salicylic acid), which realizes the detection of SO-. The detection mechanism was confirmed by fluorescence spectrum and ESR. The influences of time, temperature, dosages of MOF and benzoic acid were explored. Under the optimal conditions, a linear detection range was obtained as 40—120 μmol/L, and the detection limit was 8.3 μmol/L. The method possesses the favourable anti-interference property for common inorganic anions. Meanwhile, it was applied to the determination of SO- in rainwater and tap water samples, the results are satisfactory.
UIO-66-(COOH)2 / 自由基反应 / SO2 / 亚硫酸盐
UIO-66-(COOH)2 / Radical-mediated reaction / Sulfur dioxide(SO2) / Sulfite
| [1] |
WHO, Air Quality Guidelines: Global Update 2005, WHO, Regional Office for Europe, Copenhagen, 2006 |
| [2] |
Guerrero R. F., Villar E. C., Trends Food Sci. Technol., 2015, 42(1), 27—43 |
| [3] |
Meng Z. Q., Li J. L., Zhang Q. X., Bai W. M., Yang Z. H., Zhao Y., Wang F. Q., Inhal Toxicol., 2009, 21(14), 1223—1228 |
| [4] |
Meng Z. Q., Li J. L., Acta Physiologica Sinica, 2011, 63(6), 593—600 |
| [5] |
Zhang Q., Meng Z., Eur. J. Pharmacol., 2009, 602(1), 117—123 |
| [6] |
Li K., Li L. L., Zhou Q., Yu K. K., Kim J. S., Yu X. Q., Coordin. Chem. Rev., 2019, 388(1), 310—333 |
| [7] |
Mahadevaiah G. M. S., Kumar Y. M. S., Sathish M. A., Nagendrappa G., Anal. Chem., 2008, 63, 239—243 |
| [8] |
Theisen S., Kothe R. H., Leist U., Galensa R., Biosens. Bioelectron., 2010, 26(1), 175—181 |
| [9] |
Huang T., Hou Z. L., Xu Q. S., Huang L., Li C. L., Zhou Y. F., Langmuir, 2017, 33(1), 340—346 |
| [10] |
Shen F. P., Wang D., Liu R., Pei X. F., Zhang T., Jin J., Nanoscale, 2013, 5(2), 537—540 |
| [11] |
Kalimuthu p., Tkac J., Kappler U., Davis J. J., Bernhardt P. V., Anal. Chem., 2010, 82(17), 7374—7379 |
| [12] |
Deng Z., Chen X., Wang Y., Fang E. H., Zhang Z. G., Chen X., Anal. Chem., 2014, 87(1), 633—640 |
| [13] |
He J., Li G., Hu Y., Anal. Chem., 2015, 87(21), 11039—11047 |
| [14] |
Song W. H., Dong B. L., Kong X. Q., Wang C., Zhang N., Lin W. Y., Spectrochim. Acta A, 2019, 209, 196—201 |
| [15] |
Chen F. H., Liu A. K., Ji R. X., Xu Z. Y., Dong J., Ge Y. Q., Dyes Pigments, 2019, 165, 212—216 |
| [16] |
Sun M. T., Yu H., Zhang K., Zhang Y. J., Yan Y. H., Huang D. J., Wang S. H., Anal. Chem., 2014, 86(19), 9381—9385 |
| [17] |
Wang R., Bian C., Xie Y., Han M. J., Li Y., Xia S. H., Chem. J. Chinese Universities, 2023, 44(4), 20220719 |
| [18] |
王日, 边超, 谢勇, 韩明杰, 李洋, 夏善红. 高等学校化学学报, 2023, 44(4), 20220719 |
| [19] |
Li D. L., Gu M. Q., Wang M., Chi K. N., Zhang X., Deng Y., Ma Y. C., Hu R., Yang Y. H., Chem. J. Chinese Universities, 2019, 40(3), 439—447 |
| [20] |
李德蕾, 谷梦巧, 王敏, 迟宽能, 张茜, 邓燕, 马玉婵, 胡蓉, 杨云慧. 高等学校化学学报, 2019, 40(3), 439—447 |
| [21] |
Wang M., Guo L., Cao D. P., Anal. Chem., 2018, 90(5), 3608—3614 |
| [22] |
Xie Y. C., Ma H. X., He F. L., Chen J. Q., Ji Y. L., Han S. Y., Zhou D., Analyst, 2020, 145, 4772—4776 |
| [23] |
Wang L., Chen Y., Chem. Commun., 2020, 56, 6965—6968 |
| [24] |
Yu H. L., Dong F. Q., Li B. W., Riehle F. S., Sensor. Actuat. B Chem., 2019, 299(15), 126983—126989 |
| [25] |
Huang G. X., Si J. Y., Qian C., Wang W. K., Mei S. Q., Wang C. Y., Yu H. Q., Anal. Chem., 2018, 90(24), 14439—14446 |
| [26] |
Zhang X., Hu Q., Xia T. F., Zhang J., Yang Y., Cui Y. J., Chen B. L., Qian G. D., ACS Appl. Mater. Interfaces, 2016, 8(47), 32259—32265 |
| [27] |
Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B., J. Phys. Chem. Ref. Data, 1988, 17, 513—886 |
| [28] |
Neta P., Huie R. E., Ross A. B., J. Phys. Chem. Ref. Data, 1988, 17, 1027—1284 |
| [29] |
Zhou N., Ma Y. S., Hu B., He L. Z., Wang S. J., Zhang Z. H., Lu S. Y., Biosens. Bioelectron., 2019, 127, 92—100 |
| [30] |
Jaeschke W., Atmos. Environ., 1978, 12, 715 |
| [31] |
Wei Z., Villamena F. A., Weavers L. K., Environ. Sci. Technol., 2017, 51(6), 3410—3417 |
| [32] |
Chen S., Song Y., Li Y., Liu Y. L., Su X. G., Ma Q., New J. Chem., 2015, 39(10), 8114—8120 |
| [33] |
Zhang H., Xue S., Feng G. Q., Sensors Actuators, B Chem., 2016, 231, 752—758 |
| [34] |
Ma X., Liu C., Shan Q., Wei G. H., Wei D. B., Du Y. G., Sensors Actuat., B Chem., 2013, 188, 1196—1200 |
| [35] |
Gu X., Liu C., Zhu Y. C., Zhu Y. J., Food Chem., 2011, 59(22), 11935—11939 |
| [36] |
Sachdev A., Raj R., Matai I., Kumar V., Gopinath P., Mishra S., Anal. Methods, 2019, 11(9), 1214—1223 |
/
| 〈 |
|
〉 |