Sr2+/NO/OGP协同提高钛表面TiO2纳米管的成骨性能研究
潘长江 , 马文富 , 丁平云 , 张秋阳 , 邓林红
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 154 -165.
Sr2+/NO/OGP协同提高钛表面TiO2纳米管的成骨性能研究
Synergistically Improving Osteogenic Properties of TiO2 Nanotubes on Titanium Surface by Sr2+/NO/OGP
首先, 采用阳极氧化和水热处理技术在钛表面原位制备装载Sr2+的TiO2纳米管阵列; 然后, 采用电泳沉积的方法在纳米管表面制备羧甲基壳聚糖(CMCS)涂层; 最后, 依次在纳米管中装载NO释放分子(N-亚硝基-N-苯基羟胺铵盐)和成骨生长肽(OGP), 通过Sr2+、 NO气体分子以及OGP的协同促进成骨细胞的黏附、 生长和功能表达. 研究结果表明, 功能化的纳米管阵列不仅可以诱导羟基磷灰石(HA)的仿生沉积, 还可以持续释放Sr2+和NO气体信号分子, 显著促进成骨细胞的黏附、 增殖以及碱性磷酸酶(ALP)、 骨钙素(OCN)和Runt相关转录因子2(RUNX2)的表达. 在装载OGP后, 成骨细胞的黏附生长和功能表达进一步提高. 因此, 本文的表面改性策略可用于在钛合金表面构建具有优异生物相容性的生物活性涂层, 从而提高钛基骨替代材料的骨整合性能.
In this study, anodization and hydrothermal treatment techniques were first employed to prepare Sr2+-loaded TiO2 nanotube arrays on the titanium surface. Then, carboxymethyl chitosan(CMCS) coating was fabricated on the nanotube surface by electrophoretic deposition. Finally, NO-releasing molecules(N-Nitroso-N-phenylhydroxylamine ammonium salt, Cupferron) and osteogenic growth peptides(OGP) were sequentially loaded into the nanotubes, achieving synergistically promoting osteoblast adhesion, proliferation, and functional expression by Sr2+, NO gas molecule, and OGP. The results indicated that the functionalized nanotube arrays could not only induce biomimetic deposition of hydroxyapatite(HA), but also continuously release Sr2+ and NO gas signaling molecules, significantly promoting the adhesion and growth of osteoblasts, as well as the expressions of alkaline phosphatase(ALP), osteocalcin(OCN), and Runt related transcription factor 2(RUNX2). After loading OGP, the osteoblast adhesion, growth, and functional expression were further enhanced. Therefore, the surface modification strategy of the present study can be used to construct the bioactive coating with excellent biocompatibility on titanium alloy surfaces to improve the bone integration ability of titanium-based bone-substituted materials.
Titanium / Osteoblast / NO gas molecule
| [1] |
Singh S., Kumar A., Kamboj M., Das B., Rakha K., Singh H., J. Alloy. Compd., 2024, 976, 173094 |
| [2] |
Yu Y. Q., Jin G. D., Xue Y., Wang D. H., Liu X. Y., Sun J., Acta Biomater., 2017, 49, 590—603 |
| [3] |
Camargo W. A., Takemoto S., Hoekstra J. W., Leeuwenburgh S. C. G., Jansen J. A., van den Beucken J. J., Alghamdi H. S., Acta Biomater., 2017, 57, 511—523 |
| [4] |
Du Q., Wei D. Q., Wang Y. M., Cheng S., Liu S., Zhou Y., Jia D. C., Bioact. Mater., 2018, 3(4), 426—433 |
| [5] |
Gao P. F., Zuo Y. P., Yang Y. L., Yu J. X., Fan W. Z., Bai R. Q., Yang W. H., Cai K. Y., Chem. Eng. J., 2023, 474, 145608 |
| [6] |
Salaie R. N., Besinis A., Le H. R., Tredwin C., Handy R. D., Mat. Sci. Eng. C: Mater., 2020, 107, 110210 |
| [7] |
Zhu B., Jia E. R., Zhang Q. M., Zhang Y. Y., Zhou H., Tan Y., Deng Z. N., Colloid. Surface. B, 2023, 226, 113293 |
| [8] |
Huang Y. Z., Cai B. Y., Yuan D. L., Guo Z. J., J. Mater. Res. Technol., 2024, 30, 2986—2998 |
| [9] |
Makurat⁃Kasprolewicz B., Ossowska A., Mater. Today Commun., 2023, 34, 105425 |
| [10] |
Bhattacharjee A., Pereira B., Soares P., Popat K. C., Nanoscale, 2024, 16(26), 12510—12522 |
| [11] |
Cheng Y. N., Huo Y. F., Yu Y. L., Duan P., Dong X. Z., Yu Z. R., Cheng Q., Dai H. L., Pan Z. Y., Mater. Today Bio., 2024, 28, 101180 |
| [12] |
Cho D. H., Hwang Y. J., Park J. H., Lee J. Y., Park J. H., Jo I., Bioorg. Chem., 2023, 135, 10648 |
| [13] |
Zhou Z. Z., Liu Y., Li W. J., Zhao Z. J., Xia X. W., Liu J. L., Deng Y. G., Wu Y. B., Pan X. Q., He F., Yang H. L., Lu W. H., Xu Y., Zhu X. S., Adv. Healthc. Mater., 2024, 13(3), 2302153 |
| [14] |
Andrabi S. M., Sharma N. S., Karan A., Shahriar S. M. S., Cordon B., Ma B., Xie J. W., Adv. Sci., 2023, 10(30), 2303259 |
| [15] |
Safari B., Davaran S., Aghanejad A., Int. J. Biol. Macromol., 2021, 175, 544—557 |
| [16] |
Tao B. L., Lin C. C., He Y., Yuan Z., Chen M. W., Xu K., Li K., Guo A., Cai K. Y., Chen L. X., Chem. Eng. J., 2021, 423, 130176 |
| [17] |
Regonini D., Bowen C. R., Jaroenworaluck A., Stevens R., Mat. Sci. Eng. R., 2013, 74(12), 377—406 |
| [18] |
Milošev I., Frankel G. S., J. Electrochem. Soc., 2018, 165(3), C127—C144 |
| [19] |
Phoon B. L., Lai C. W., Juan J. C., Show P. L., Pan G. T., Int. J. Hydrogen Energ., 2019, 44(28), 14316—14340 |
| [20] |
Chen X. N., Wang X. H., Fang D., Fuller. Nanotub. Car. N., 2020, 28(12), 1048—1058 |
| [21] |
Leinweber P., Kruse J., Walley F. L., Gillespie A., Eckhardt K. U., Blyth R. I. R., Regier T., J. Synchrotron Radiat., 2007, 14, 500—511 |
| [22] |
Grabowska B., Arch. Foundry Eng., 2010, 10(4), 43—46 |
| [23] |
Podstawka E., J. Raman Spectrosc., 2008, 39(9), 1290—1305 |
| [24] |
Dumont V. C., Mansur A. A. P., Carvalho S. M., Borsagli F. G. L. M., Pereira M. M., Mansur H. S., Mat. Sci. Eng. C: Mater., 2016, 59, 265—277 |
| [25] |
Pakdel P. M., Peighambardoust S. J., Carbohyd. Polym., 2018, 201, 264—279 |
| [26] |
Cai S. X., Wu C. X., Yang W. G., Liang W. F., Yu H B.., Liu L. Q., Nanotechnol. Rev., 2020, 9(1), 971—989 |
| [27] |
Silingardi F., Salamanna F., Español M., Maglio M., Sartori M., Giavaresi G., Bigi A., Ginebra M., Boanini. E., Biomater. Adv., 2024, 163, 213968 |
| [28] |
Dias⁃Netipanyj M. F., Sopchenski L., Gradowski T., Elifio⁃Esposito S., Popat K. C., Soares P., J. Mater. Sci.⁃Mater. M., 2020, 31(11), 94 |
| [29] |
He X. C., Tang K. Y., Li X. M., Wang F., Liu J., Zhou F. F., Yang M. Y., Li M. X., Int. J. Biol. Macromol., 2019, 137, 45—53 |
| [30] |
Ye. J., Jiang J. K., Zhou Z. R., Weng Z. Z., Xu Y. Y., Liu L. B., Zhang W., Yang Y. F., Luo J., Wang X. L., ACS Nano, 2021, 15(8), 13692—13702 |
| [31] |
Lin Y. J., Chen C. C., Chi N. W., Nguyen T., Lu H. Y., Nguyen D., Lai P. L., Sung H. W., Adv. Mater., 2018, 30(22), 1705605 |
| [32] |
Lee J. K., Kim D. S., Park S. Y., Baek S. W., Jung J. W., Kim T. H., Han D. K., Adv. Sci., 2023, 10(6), 2205336 |
| [33] |
Li M. T., Wei F., Yin X. Q., Xiao L., Yang L., Su J. H., Weng J., Feng B., Xiao Y., Zhou Y. H., Mat. Sci. Eng. C: Mater., 2020, 109, 110508 |
| [34] |
Amso Z., Cornish J., Brimble M. A., Med. Res. Rev., 2016, 36(4), 579—640 |
| [35] |
Zhang Y. N., Wang K., Song Y., Feng E. P., Dong K., Han. Y., Lu T. L., Appl. Surf. Sci., 2020, 528, 147055 |
| [36] |
Wang L. Y., Jiang S. J., Zhou J. L., Gholipourmalekabadi M., Cao Y., Lin K. L., Zhuang Y., Yuan C. Y., Bioact. Mater., 2025, 49, 85—120 |
| [37] |
Li Y. R., Wang S., Dong Y. J., Mu P., Yang Y., Liu X. Y., Lin C. J., Huang Q. L., Bioact. Mater., 2020, 5(4), 1062—1070 |
| [38] |
Kalyanaraman H., Schall N., Pilz R. B., Nitric Oxide⁃Biol. Ch., 2018, 76, 62—70 |
| [39] |
Yao H. Y., Emre E. S. T., Fan Y., Wang J. L., Liu F., Wei J. C., Bioact. Mater., 2025, 48, 200—216 |
| [40] |
Wang Q., Yang X. J., Wang G. F., Wan L. L., Wang S. W., Niu X. Y., Wu J. N., Pan J. S., Mater. Des., 2020, 193, 108811 |
/
| 〈 |
|
〉 |