Methanol synthesis via CO2 hydrogenation using renewable energy‐derived “green”H2 is one of the most promising carbon recycling technologies. Among various catalytic systems, Cu‐based catalysts have been extensively studied, wherein the construction of bimetallic catalysts is recognized as an effective strategy to enhance their methanol synthesis performance. To promote the industrial application of Cu‐based bimetallic catalysts in methanol synthesis, this paper systematically reviews the current status in this field by introducing the construction methods of bimetallic catalysts, elaborating the structural characterization techniques for bimetallic catalysts, focusing on the application of Cu‐based bimetallic catalysts in methanol synthesis, and analyzing the challenges and opportunities faced by this field. This work aims to provide fundamental insights into the promotion mechanisms of Cu‐based bimetallic catalysts in methanol synthesis, offering theoretical foundations and technical references for developing high‐efficiency Cu‐based methanol synthesis catalysts.
尽管CO2加氢制甲醇研究已取得显著进展,但高性能且经济可行催化剂的开发仍是该技术大规模应用的主要瓶颈之一[11-12]。按照活性组分划分,目前广泛研究的催化剂主要包括铜(Cu)[13-14]、贵金属(Pd[15]、Au[16]等)、氧化铟(In2O3)[17-18]和固溶体(ZnZrO x 等)催化体系[19-20]。其中,Cu基催化剂具有相对低廉的价格、温和的催化条件和良好的活性等特点,受到广泛关注[21-22]。然而,目前Cu基催化剂在甲醇合成中展现的催化性能未达到工业应用要求。因此,亟需开发新型制备策略,以优化Cu基催化剂表界面结构特性,进而提升Cu基催化剂的甲醇合成性能。
WANGZhoujun, SONGHui, LIUHuimin, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects [J]. Angewandte Chemie: International Edition, 2020, 59: 8016-8035.
[2]
RAE C, KIMK Y, KIME H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives [J]. ACS Catalysis, 2020, 10: 11318-11345.
KEELINGR. Scripps institution of oceanography[EB/OL]. (2023-07-28) [2025-07-01].
[5]
GUTERRESA. Carbon neutrality by 2050: The world’s most urgent mission[EB/OL]. (2020-12-11) [2025-07-01].
[6]
LEEB, LEEH, LIM D, et al. Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?[J]. Applied Energy,2020,279:115827. DOI:10.1016/j.apenergy.2020.115827 .
[7]
XIEGuiming, WANGXiaorui, LIXianfeng, et al. Oxygen vacancy-boosted thermocatalytic CO2 hydrogenation: Engineering strategies, promoting effects and mediating mechanisms [J]. Journal of Energy Chemistry, 2024, 99: 393-408.
ZHANGXinbao, ZHANGGuanghui, SONGChunshan, et al. Catalytic conversion of carbon dioxide to methanol: Current status and future perspective [J]. Frontiers in Energy Research,2021,8:621119. DOI:10.3389/fenrg.2020.621119 .
[10]
XIEGuiming, BAIXingyang, MANYi, et al. High-performance Al-doped Cu/ZnO catalysts for CO2 hydrogenation to methanol:MIL-53(Al) source-enabled oxygen vacancy engineering and related promoting mechanisms [J]. Chemical Engineering Journal, 2024, 480: 148195. DOI:10.1016/j.cej.2023.148195 .
[11]
JIANGXiao, NIEXiaowa, GUOXinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical Reviews, 2020, 120(5): 7984-8034.
[12]
ZHONGJiawei, YANGXiaofeng, WUZhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
[13]
YANYong, WONGR J, MAZhirui, et al. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2022, 306: 121098. DOI:10.1016/j.apcatb. 2022.121098 .
[14]
XIEGuiming, BAIXingyang, NIUYanrui, et al. Using Zn-MOFs as partial Zn source to prepare Cu/ZnO/Al2O3 catalysts for methanol synthesis via CO2 hydrogenation [J]. International Journal of Hydrogen Energy, 2025, 99: 966-973.
[15]
SONGJimin, LIUSihang, YANGChengsheng, et al. The role of Al doping in Pd/ZnO catalyst for CO2 hydrogenation to methanol [J].Applied Catalysis B:Environmental,2020,263: 118367. DOI:10.1016/j.apcatb.2019.118367 .
[16]
CHENShilong, ABDEL-MAGEEDA M, MOCHIZUKIC, et al. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size [J]. ACS Catalysis, 2021, 11(15): 9022-9033.
[17]
SHENChenyang, SUNKaihang, ZHANGZhitao, et al. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: Experimental and theoretical studies [J]. ACS Catalysis, 2021, 11(7): 4036-4046.
[18]
SUNKaihang, SHENChenyang, ZOURui, et al. Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2 [J]. Applied Catalysis B: Environmental, 2023, 320: 122018. DOI:10.1016/j.apcatb. 2022.122018 .
[19]
SHAFeng, TANGChizhou, TANGShan, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2021, 404: 383-392.
[20]
TADAS, OCHIAIN, INOSHITAH K, et al. Active sites on Zn x Zr1-x O2-x solid solution catalysts for CO2‑to-methanol hydrogenation [J]. ACS Catalysis, 2022, 12(13): 7748-7759.
[21]
HANXiaoyu, XIAOTiantian, LIMaoshuai, et al. Synergetic interaction between single-atom Cu and Ga2O3 enhances CO2 hydrogenation to methanol over CuGaZrO x [J]. ACS Catalysis, 2023, 13(20): 13679-13690.
[22]
CHENZiyang, WENJinjun, ZENGYu, et al. The origin of the mediocre methanol selectivity of Cu/ZnO-based catalysts for methanol synthesis from CO2 hydrogenation [J]. Applied Catalysis B: Environmental,2024,340:123192.DOI:10.1016/j.apcatb. 2023.123192 .
[23]
WANGXiaorui, JINRongrong, YANWangwei, et al. An Al2O3-supported NiFe bimetallic catalyst derived from hydrotalcite precursors for efficient CO2 methanation [J]. Catalysis Today, 2022, 402: 38-44.
[24]
HUANGJing, DAIJiawei, ZHUJiannan, et al. Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential [J]. Journal of Catalysis, 2022, 415: 134-141.
[25]
HEChengxuan, GONGYalin, LISongting, et al. Single-atom alloys materials for CO2 and CH4 catalytic conversion [J]. Advanced Materials, 2024, 36(16): 2311628. DOI:10.1002/adma.202311628 .
[26]
LIM M J, TSANGS C E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: A mini-review and prospects [J]. Catalysis Science & Technology, 2018, 8: 3450-3464.
[27]
GAOJia, SONGFujiao, LIYue, et al. Cu2In nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol [J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12331-12337.
[28]
GAOBiao, WENZhang, WANGYifu, et al. Recent advances in alloy catalysts for CO2 hydrogenation to methanol [J]. ChemCatChem,2024, 16(19): e202400814. DOI:10.1002/cctc.202400814 .
[29]
JIANGXiao, KOIZUMIN, GUOXinwen, et al. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol [J]. Applied Catalysis B: Environmental, 2015, 170/171: 173-185.
[30]
TADAS, WATANABEF, KIYOTAK, et al. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation [J]. Journal of Catalysis, 2017, 351: 107-118.
[31]
TANQingqing, SHIZhisheng, WUDongfang. CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst[J] .Industrial & Engineering Chemistry Research, 2018, 57(31): 10148-10158.
[32]
WANGWeiwei, TONGOD W K, SONGLixin, et al. Effect of Au addition on the catalytic performance of CuO/CeO2 catalysts for CO2 hydrogenation to methanol [J]. Topics in Catalysis, 2021, 64: 446-455.
[33]
XIEGuiming, JINRongrong, RENPengju, et al. Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts [J]. Applied Catalysis B: Environmental, 2023, 324: 122233. DOI:10.1016/j.apcatb.2022.122233 .
[34]
XIEShangzhi, LUOXintian, ZHAOJiajian, et al. Synergistic effect of copper and indium species for highly selective CO2 hydrogenation to methanol [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(49): 17925-17935.
[35]
CHOIE J, LEEY H, LEED-W, et al. Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts [J]. Molecular Catalysis, 2017, 434: 146-153.
[36]
DINI U, ALOTAIBIM A, ALHARTHIA I, et al. Green synthesis approach for preparing zeolite based Co-Cu bimetallic catalysts for low temperature CO2 hydrogenation to methanol [J]. Fuel, 2022, 330: 125643. DOI:10.1016/j.fuel.2022.125643 .
[37]
MOSRATIJ, ISHIDAT, MAC H, et al. Low-temperature hydrogenation of CO2 to methanol in water on ZnO-supported CuAu nanoalloys [J]. Angewandte Chemie:International Edition, 2023, 62: e202311. DOI:10.1002/anie.202311340 .
[38]
JINZepu, WANGLikang, GUOJunxin, et al. Cu-Co/In2O3 bimetallic catalysts for improved methanol synthesis: Synergistic effect in CO2 hydrogenation [J]. Energy Fuels, 2025, 39(2): 1262-1270.
[39]
ZHAOFuzhen, GONGMiao, CAOKun, et al. Atomic layer deposition of Ni on Cu nanoparticles for methanol synthesis from CO2 hydrogenation [J]. ChemCatChem, 2017, 9(19): 3772-3778.
[40]
HUBing, YINYazhi, LIUGuoliang, et al. Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts [J]. Journal of Catalysis, 2018, 359: 17-26.
[41]
SHIZhisheng, TANQingqing, WUDongfang. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol [J]. AIChE Journal, 2019, 65(3): 1047-1058.
[42]
XIEGuiming, BAIXingyang, YUFei, et al. Oxygen vacancy engineering in MOF-derived AuCu/ZnO bimetallic catalysts for methanol synthesis via CO2 hydrogenation [J]. Catalysis Today, 2024, 434: 114702. DOI:10.1016/j.cattod.2024.114702 .
[43]
XIEGuiming, BAIXingyang, NIUYanrui, et al. Highly dispersed AuCu nanoparticles confined in Zr-MOFs for efficient methanol synthesis from CO2 hydrogenation [J]. ACS Applied Materials & Interfaces, 2024, 16(51): 70626-70633.
[44]
TAYLORM J, BEAUMONTS K, ISLAMM J, et al. Atom efficient PtCu bimetallic catalysts and ultra dilute alloys for the selective hydrogenation of furfural [J]. Applied Catalysis B: Environmental, 2021, 284: 119737. DOI:10.1016/j.apcatb.2020.119737 .
[45]
RENQinghui, HAOLeilei, YANGJiangrong, et al. Promoting electrocatalytic semihydrogenation of alkynols to alkenols over a bimetallic CuAu alloy catalyst [J]. ACS Catalysis, 2024, 14(8): 5675-5684.
[46]
SHENLingqin, SUNLuyao, DOUTHWAITEM, et al. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid [J]. ACS Catalysis, 2024, 14(15): 11343-11351.
[47]
LIYunan, GUOLingling, DUMeng, et al. Unraveling distinct effects between CuO x and PtCu alloy sites in Pt-Cu bimetallic catalysts for CO oxidation at different temperatures [J]. Nature Communications, 2024, 15: 5598. DOI:10.1038/s41467-024-49968-6 .
[48]
YUYangyang, DONGXing’an, CHENPeng, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction [J]. ACS Nano, 2021, 15(9): 14453-14464.
[49]
XINGFeiling, JEONJ, TOYAOT, et al. A Cu-Pd single-atom alloy catalyst for highly efficient NO reduction [J]. Chemical Science, 2019, 36: 8292-8298.
[50]
KIMK Y, JANGW, BYUNW J, et al. Highly efficient layered double hydroxide-derived bimetallic Cu-Co alloy catalysts for the reverse water-gas shift reaction [J]. ACS Catalysis, 2024, 14: 7020-7031.
[51]
XUJunyuan, HANXinyu, ZHULihua, et al. Revealing the intrinsic relationship between nano/electronic structure of CuCo/NC (NC drived from ZIF-67) and their catalytic performance for furfural selective hydrogenation [J]. Journal of Catalysis, 2025, 447: 116140.DOI: 10.1016/j.jcat.2025.116140 .
[52]
SHURiyang, LINYuankai, ZHOULinxuan, et al. Enhanced lignin hydrogenolysis through synergy-induced bimetallic NiCu catalyst for chemocatalytic production of aromatic monomers [J]. Chemical Engineering Science, 2024, 286: 119654.DOI: 10.1016/j.ces.2023.119654 .
[53]
ZHANGYuanzheng, CHENXiang, WANGWeilai, et al. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys [J]. Applied Catalysis B: Environmental, 2022, 310: 121346. DOI:10.1016/j.apcatb.2022.121346 .
[54]
JIANGXiao, NIEXiaowa, WANGXiaoxing, et al. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation [J]. Journal of Catalysis, 2019, 369: 21-32.
[55]
LIULingna, FANFei, JIANGZhao, et al. Mechanistic study of Pd-Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation [J]. Journal of Physical Chemistry C, 2017, 121: 26287-26299.
[56]
RENYinjuan, XINChunyu, HAOZhongkai, et al. Probing the reaction mechanism in CO2 hydrogenation on bimetallic Ni/Cu(100) with near-ambient pressure X-ray photoelectron spectroscopy [J]. ACS Applied Materials & Interfaces, 2019, 12: 2548-2554.