In the era of social media,epidemic-related information is spreading across various social platforms along with the outbreak of large-scale pandemics. Therefore,assessing the impact of information diffusion on epidemic prevention and control in social networks and further guiding public opinion on the network reasonably have significant practical and economic importance for epidemic prevention and control. In recent years,revealing and understanding the influence of social information diffusion on the spread of epidemics and related prevention and control strategies have become a research hotspot in the field of network science. This article reviews the latest advances in the influence of information diffusion on the prevention and control of infectious disease transmission within single networks,double-layer networks,and higher-order networks,as well as related challenges and potential studies in the future.
Wang W等[38]研究了基于信息扩散来防控SIR流行病传播,发现增加信息传播速率、信息传播网络的异质性和层间度关联都有利于抑制流行病传播。当考虑免疫代价时,发现信息扩散过快或者过慢,均不利于抑制流行病传播[40]。Liu QH等[48]假设个体采取免疫依赖于他获知的信息多少,发现信息扩散概率存在一个最优值,使得免疫和感染代价最低。
Li WY等[49]基于单纯复型描述的高阶网络研究了信息扩散与SIS流行病传播的共同演化。他们在单纯复型上提出了一个易感态-感染态-易感态-不知情-知情-不知情(SIS-UAU)模型,其中流行病a的传播遵循SIS模型,信息b的扩散遵循UAU模型。当疫情在社会上蔓延时,疫情信息会通过微信、微博等社交平台扩散。疫情信息的扩散可能会让更多人意识到疫情的危险,从而加强自我防护。即疫情促进信息扩散,反之,信息扩散则抑制疫情传播。模型中节点有4种可能的存在状态:不知情且易感态(SU)、知情且易感态(SA)、不知情且感染态(IU)和知情且感染态(IA)。SU态节点可能被感染且对疫情信息不知情,同样,可以知晓SA、IU和IA状态的含义。节点j可通过概率将信息扩散到处于SU状态的邻居节点i,节点i知晓信息后转变为SA状态。当邻居节点i处于IU态时,节点j可通过更大的概率将信息扩散到节点i使其转变为IA状态,这是由于节点i被感染后将会更容易接受疫情信息。此外,当处于状态SU(IU)的节点i同时与2个均知晓疫情信息的邻居节点j和k交互时,节点j和k可通过2-单型以更大的概率()将信息扩散到节点i使其转变为SA(IA)状态,。对于流行病a的传播,感染态节点(IU或IA)只能将流行病传播给易感且不知情邻居,而不能传播给易感且知情邻居。当邻居节点i和k均处于感染态时,流行病可通过2-单型以概率传播到处于SU状态的节点,使其转变为IU状态。他们通过微观马尔科夫链法对该动力学过程进行了描述:
CromerD, SteainM, ReynaldiA,et al. Predicting vaccine effectiveness against severe COVID-19 over time and against variants:a meta-analysis[J]. Nat Commun,2023,14(1):1633.
[2]
Pastor-SatorrasR, CastellanoC, Van MieghemP,et al. Epidemic processes in complex networks[J]. Rev Mod Phys,2015,87(3):925-979.
[3]
ColizzaV, Pastor-SatorrasR, VespignaniA. Reaction–diffusion processes and metapopulation models in heterogeneousnetworks[J]. Nat Phys,2007,3:276-282.
[4]
FunkS, GiladE, WatkinsC,et al. The spread of awareness and its impact on epidemic outbreaks[J]. Proc Natl Acad Sci USA,2009,106(16):6872-6877.
JiaXR, HuoLL, HuangYQ,et al. Analysis on the changing trend and influencing factors of infectious disease prevention and treatment literacy of residents in Qingdao based on Joinpoint and Logistic model[J]. 2023,50(19):3482-3486.
[7]
Pastor-SatorrasR, VespignaniA. Epidemic spreading in scale-free networks[J]. Phys Rev Lett,2001,86(14):3200-3203.
[8]
WangW, TangM, ZhangHF,et al. Epidemic spreading on complex networks with general degree and weight distributions[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2014,90(4):042803.
[9]
BoguñáM, CastellanoC, Pastor-SatorrasR. Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks[J]. Phys Rev Lett,2013,111(6):068701.
[10]
BarthélemyM, BarratA, Pastor-SatorrasR,et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J]. Phys Rev Lett,2004,92(17):178701.
[11]
ShuPP, TangM, GongK,et al. Effects of weak ties on epidemic predictability on community networks[J]. Chaos,2012,22(4):043124.
[12]
MorenoY, GómezJB, PachecoAF. Epidemic incidence in correlated complex networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2003,68(3 Pt 2):035103.
[13]
NewmanME. Random graphs with clustering[J]. Phys Rev Lett,2009,103(5):058701.
[14]
WangRS, AlbertR. Effects of community structure on the dynamics of random threshold networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2013,87(1):012810.
[15]
XuEHW, WangW, XuC,et al. Suppressed epidemics in multirelational networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2015,92(2):022812.
[16]
BoccalettiS, BianconiG, CriadoR,et al. The structure and dynamics of multilayer networks[J]. Phys Rep,2014,544(1):1-122.
VazquezA, RáczB, LukácsA,et al. Impact of non-poissonian activity patterns on spreading processes[J]. Phys Rev Lett,2007,98(15):158702.
[20]
CuiAX, WangW, TangM,et al. Efficient allocation of heterogeneous response times in information spreading process[J]. Chaos,2014,24(3):033113.
[21]
JoHH, PerottiJI, KaskiK,et al. Analytically solvable model of spreading dynamics with non-poissonian processes[J]. Phys Rev X,2014,4:011041.
[22]
BalcanD, ColizzaV, GonçalvesB,et al. Multiscale mobility networks and the spatial spreading of infectious diseases[J]. Proc Natl Acad Sci U S A,2009,106(51):21484-21489.
[23]
BalcanD, VespignaniA. Phase transitions in contagion processes mediated by recurrent mobility patterns[J]. Nat Phys,2011,7:581-586.
[24]
BrockmannD, HelbingD. The hidden geometry of complex,network-driven contagion phenomena[J]. Science,2013,342(6164):1337-1342.
[25]
IannelliF, KoherA, BrockmannD,et al. Effective distances for epidemics spreading on complex networks[EB/OL]. [2023-11-01].
[26]
TangM, LiuZH, LiBW. Epidemic spreading by objective traveling[J]. Europhys Lett,2009,87(1):18005.
[27]
Gómez-GardeñesJ, EcheniqueP, MorenoY. Immunization of real complex communication networks[J]. Eur Phys J B,2006,49(2):259-264.
[28]
ZhangHF, LiKZ, FuXC,et al. An efficient control strategy of epidemic spreading on scale-free networks[J]. Chin Phys Lett,2009,26(6):068901.
[29]
CohenR, HavlinS, Ben-AvrahamD. Efficient immunization strategies for computer networks and populations[J]. Phys Rev Lett,2003,91(24):247901.
[30]
GranellC, GómezS, ArenasA. Dynamical interplay between awareness and epidemic spreading in multiplex networks[J]. Phys Rev Lett,2013,111(12):128701.
[31]
DeijfenM. Epidemics and vaccination on weighted graphs[J]. Math Biosci,2011,232(1):57-65.
[32]
RattanaP, BlyussKB, EamesKTD,et al. A class of pairwise models for epidemic dynamics on weighted networks[J]. Bull Math Biol,2013,75(3):466-490.
[33]
ChinazziM, DavisJT, AjelliM,et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus(2019-nCoV) outbreak[J]. medRxiv,2020:2020.02.09.20021261.
[34]
ChenDB, ZhouT. Control efficacy on COVID-19[EB/OL]. [2023-11-01].
[35]
ChinazziM, DavisJT, AjelliM, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak[J]. Science,2020,368:395-400.
LuanRS, WangX, SunX,et al. Epidemiology,treatment,and epidemic prevention and control of the coronavirus disease 2019: a review[J]. Journal of Sichuan University(Medical Science Edition),2020,51(2):131-138.
[38]
BauchCT, GalvaniAP. Social factors in epidemiology[J]. Science,2013,342(6154):47-49.
[39]
ZhanXX, LiuCA, ZhouG,et al. Coupling dynamics of epidemic spreading and information diffusion on complex networks[J]. Appl Math Comput,2018,332:437-448.
ZhangHF, XieJR, ChenHS,et al. Impact of asymptomatic infection on coupled disease-behavior dynamics in complex networks[J]. EPL Europhys Lett,2016,114(3):38004.
[43]
JuangJ, LiangYH. The impact of vaccine success and awareness on epidemic dynamics[J]. Chaos,2016,26(11):113105.
[44]
WangW, TangM, ZhangHF,et al. Dynamics of social contagions with memory of nonredundant information[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2015,92(1):012820.
[45]
WattsDJ. A simple model of global cascades on random networks[J]. Proc Natl Acad Sci U S A,2002,99(9):5766-5771.
[46]
GuoQT, JiangX, LeiYJ,et al. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks[J]. Phys Rev E,2015,91:012822.
[47]
PanYH, YanZJ. The impact of individual heterogeneity on the coupled awareness-epidemic dynamics in multiplex networks[J]. Chaos,2018,28(6):063123.
[48]
SagarV, ZhaoY, SenA. Effect of time varying transmission rates on coupled dynamics of epidemic and awareness over multiplex network[EB/OL]. [2023-11-01].
[49]
WangHJ, ChenCY, QuB,et al. Epidemic mitigation via awareness propagation in communication networks:the role of time scales[J]. New J Phys,2017,19(7):073039.
[50]
LiuQH, WangW, TangM,et al. Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks[J]. Sci Rep,2016,6:25617.
[51]
LiWY, CaiM, ZhongXN,et al. Coevolution of epidemic and infodemic on higher-order networks[J]. Chaos Solitons Fractals,2023,168:113102.
[52]
WangHA, ZhangHF, ZhuPC,et al. Interplay of simplicial awareness contagion and epidemic spreading on time-varying multiplex networks[J]. Chaos,2022,32(8):083110.
[53]
LiuLJ, FengML, XiaCY,et al. Epidemic trajectories and awareness diffusion among unequals in simplicial complexes[J]. Chaos Solitons Fractals,2023,173:113657.
[54]
SunQY, WangZS, ZhaoDW,et al. Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes[J]. Chaos Solitons Fractals,2022,164:112734.