肾结石防治的现状与前景

杨嗣星 ,  宋超 ,  廖文彪

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (06) : 649 -654.

PDF (567KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (06) : 649 -654. DOI: 10.13406/j.cnki.cyxb.003526
泌尿系统结石

肾结石防治的现状与前景

作者信息 +

Current status and prospects of the prevention and treatment of kidney stones

Author information +
文章历史 +
PDF (579K)

摘要

目的 总结近几年肾结石防治的最新成果,并基于前人经验和本团队的实践,展望肾结石防治的前景和发展方向,为肾结石防治研究提供全新的理念。 方法 检索了PubMed、中国知网、万方数据库中近5年发表的有关肾结石防治相关的文献,共纳入高质量的论文包括40篇临床研究和20篇基础研究。结合这些研究和本团队的经验及思考,对近5年来肾结石防治研究现状和前景进行讨论。 结果 近几年肾结石防治研究取得了丰硕成果,其临床研究主要集中在术前肾结石成分分析、肾结石碎石术式及设备、结石药物治疗等方面;基础研究则集中在晶体介导的肾小管上皮细胞损伤、免疫细胞调控、代谢调控机制以及基础研究实验模型等方面;首次提出“极致软镜技术”的概念。 结论 近5年来肾结石防治成果卓越且具有广阔的前景。展望未来,手术治疗肾结石有望通过“极致软镜技术”实现对肾结石患者最高的清石率、最小的并发症、最少的康复时间和全程舒适无痛化的诊疗目标;肾结石的病因学研究有望在结石晶体结构、肾小管上皮细胞损伤后的修复机制、新型肾结石实验模型的建立等方面另辟蹊径,以突破现今肾结石基础研究成果转化的瓶颈。

Abstract

Objective To summarize the latest achievements in the prevention and treatment of kidney stones in recent years,to look forward to the prospects and development direction of the prevention and treatment of kidney stones,and to provide brand-new concepts for research on the prevention and treatment of kidney stones. Methods PubMed,CNKI,and Wanfang Data were searched for articles on the prevention and treatment of kidney stones published within the past five years,and high-quality articles(40 clinical studies and 20 basic studies) were included. With reference to these studies and the experience and thoughts of our team,this article discusses the current status and prospects of research on the prevention and treatment of kidney stones. Results In recent years,substantial achievements had been obtained for research on the prevention and treatment of kidney stones. Related clinical studies mainly focused on the composition of kidney stones,lithotripsy procedures and equipment for kidney stones,and pharmacotherapy for kidney stones,while basic studies mainly focused on crystal-mediated renal tubular epithelial cell damage,immune cell regulation,metabolic regulation mechanism,and experimental models for basic research. The concept of “extremely flexible ureteroscopy” was proposed for the first time. Conclusion Great achievements have been made for the prevention and treatment of kidney stones in the past five years,showing a promising future. In the future,surgical treatment of kidney stones is expected to achieve the goal of the highest stone removal rate,the lowest number of complications,the shortest rehabilitation time,and a comfortable and painless diagnosis and treatment process through the technique of “extremely flexible ureteroscopy”. The research on the etiology of kidney stones may help to break through the bottleneck of the transformation of basic research findings for kidney stones from the aspects of the crystal structure of kidney stones,the repair mechanism of renal tubular epithelial cell damage,and the new experimental models for kidney stones.

关键词

肾结石 / 临床研究 / 基础研究 / 现状 / 前景

Key words

kidney stones / clinical research / basic research / current status / prospects

引用本文

引用格式 ▾
杨嗣星,宋超,廖文彪. 肾结石防治的现状与前景[J]. 重庆医科大学学报, 2024, 49(06): 649-654 DOI:10.13406/j.cnki.cyxb.003526

登录浏览全文

4963

注册一个新账户 忘记密码

肾结石是泌尿外科常见疾病,其高患病率、高复发率、高住院结构占比以及高治疗成本的特点,给患者家庭和社会带来了严重的负担[1-2]。为达到结石预防和治疗一体化的肾结石防治目标,泌尿外科学者们在肾结石防治的临床研究和基础研究上做出了许多尝试和努力。近些年来,在中华医学会泌尿外科分会、中国尿结石联盟等组织的领导下,我国的肾结石防治无论在临床还是在基础研究方面都取得一系列丰硕的成果,这极大地推动了肾结石防治研究的进步。本文就近几年来肾结石防治的临床及基础研究现状进行总结和讨论,并基于前人的经验和本团队的实践,展望我国肾结石防治的前景。在临床研究领域上创新性地提出“极致软镜技术”的概念,在基础研究领域上提出以晶体学、细胞修复、大动物结石模型为研究方向的理念,从而为肾结石防治提供新的见解和发展方向。

1 肾结石防治的临床研究

1.1 研究现状

临床研究是医学创新和发展的基石,是保障患者安全和提高医疗质量的关键助力。近些年来,一大批创新性及技术改良的临床研究如雨后春笋般涌现。

肾结石术后常规做结石成分分析已相当普及,但术前肾结石成分分析对治疗有重要的指导意义。双源双能量CT(dual-source dual-energy CT,DSDECT)术前可分析出肾结石的主要成分[3],但对于非尿酸结石的分辨能力仍存在争议[4]。添加碘图像可增加对非尿酸结石的识别[5-6]。同步辐射X射线计算机显微断层成像可以在不破坏结石完整性的情况下对其进行分析和三维重建,成功地对草酸钙结石和磷酸铵镁结石进行鉴别[7]

新近研究发现联合羟基柠檬酸[8]、盐酸坦洛辛[9]、酮咯酸氨丁三醇与间苯三酚[10]等药物在一定程度上优化了体外冲击波碎石术的碎石排石效果。多项随机对照试验证实我国自主研发的物理振动排石机可以有效且安全地促进手术后残石清除[11-12],也可直接用于1~2 cm的输尿管结石的排石治疗[13]

在经皮肾镜取石术(percutaneous nephrolithotripsy,PCNL)技术方面,一系列创新及改良术式如微通道、超细镜、针状肾镜、无管化等使PCNL更加贴近微创安全的治疗目标[14]。采用负压吸引末端可弯曲鞘对RIRS术中维持液体灌流和降低肾盂内压有显著效果,有助于提高RIRS的清石率,缩短手术时间和减少术后并发症[15-16]。一次性电子输尿管软镜(single-use flexible ureteroscopes,su-fURS)可以降低原来使用可重复输尿管软镜所花费的医疗成本[17]。前瞻性多中心随机对照研究发现国产su-fURS治疗上尿路结石具有良好的安全性和有效性,并且其器械故障/缺陷率、碎石成功率以及不良事件发生率与可重复使用输尿管软镜无明显差异,在术中图像质量方面优于可重复使用输尿管软镜[18-19]。机器人辅助下的RIRS已经在猪肾结石模型中被证实是一种安全可行的碎石方式[20]。除了碎石清石之外,输尿管软镜镜检和镜下消融术对上尿路来源血尿有着重要的诊断和治疗作用[21]

激光设备的发展极大地推动肾结石治疗的进步。传统钬激光有热效应明显、结石位移、结石难以粉末化3大不可忽视的缺陷[22]。摩西技术通过降低与结石的反作用力,使每次调整光纤至结石表面的时间缩短,进而在一定程度上加快结石消融和缩减手术时间[23]。铥光纤激光被认为是有效且安全的碎石治疗方案,在增加清石率和减少手术并发症方面优于钬激光,有可能挑战钬激光在尿路结石治疗中的主导地位[24-25]。新近报道了1项采用飞秒激光(femtosecond laser)粉碎尿路结石的体外研究,发现飞秒激光通过等离子体介导的烧蚀机制可以产生比钬激光更小的结石碎片,以及安全可控的热效应,这为飞秒激光在肾结石的防治研究提供了基础[22]

RIRS术后易出现发热、感染、尿脓毒血症等并发症[26]。我国学者提出“智能控压”理念,在输尿管软镜通路鞘上连接压力传感器和智能控压冲洗抽吸平台,明显提升了RIRS的安全性[27]。He XL等[28]报道1项RIRS联合智能控压清石系统成功治疗鹿角形肾结石的病例。由波士顿科技公司生产的LithoVue Elite一次性软性输尿管已经通过临床验证,具有压力传感功能的LithoVue Elite系统在进行输尿管镜碎石术时能准确地测量肾盂内压[29]

术前研究肾盂肾盏分枝状结构对RIRS有重要的指导意义。通过CT三维重建结合计算机辅助学习以及3D打印技术,再与尸体肾脏的解剖研究进行匹配,以提高体内研究的准确率[30-32]。另有Sampaio分类、改良的高泽肾盂解剖学分类等[33-34]方法可对术后清石率进行评估,以减少和预防术后并发症[35]

药物治疗也是肾结石治疗的重要部分。我国中药创新药广金钱草总黄酮胶囊对输尿管结石具有排石、溶石、预防复发的疗效且具有较高的安全性[36-37]。我国学者研发的口服草酸降解酶,既能降低食源性草酸又能降低内源性草酸,对草酸代谢异常及高草酸血症患者有很好的疗效[38]。另外,Langman CB等[39]的前瞻性随机对照试验表明口服草酸降解酶ALLN-177通过降解胃肠道中的饮食草酸而减少草酸吸收,从而有效地缓解了继发性高草酸尿及其并发症。葡萄糖酸锌能显著提高人体内草酸代谢细菌的丰度,提高乳酸杆菌和草酸降解酶的活性[40]。本团队发现五味子乙素能有效增加肾结石中肾小管上皮细胞的细胞活力,减轻线粒体功能紊乱、氧化应激和铁死亡[41]。另外,还有黄精、云木香等中药也有一定的肾结石保护作用[42-43]

1.2 前景展望

随着人工智能的发展和广泛应用,手术治疗肾结石的前景可能会发展为仅仅采用2种手术,即完全经人体自然腔道手术和体外冲击波碎石手术来完成,而不再采用经皮肾镜手术。

首先是全民医保的覆盖。根据《“十四五”全民医疗保障规划》,我国已建成全世界最大、覆盖全民的基本医疗保障网,基本医疗保险覆盖13.6亿人,覆盖率稳定在95%以上。如B超、X线、CT等与肾结石诊断相关的影像学检查均纳入医保。并且根据《健康管理蓝皮书:中国健康管理与健康产业发展报告No.5(2022)》显示,2011年至2020年中国的健康检查率稳步上升,覆盖总人口数的30%,这使得更多无症状肾结石被及时发现。

另一方面,随着新型激光设备、新型一次性电子软镜、末端可弯曲鞘、肾盂内压监控及负压吸引技术的发展和临床应用,加之对肾内集合系统认识的进一步深化、影像组学技术在术前对结石成分的预判及AI、机器人技术的加持,已经使得软性输尿管镜术全面演进,实现代际跨越,使其更广泛地应用于现代肾结石的碎石、清石之中。而舒适化医疗及快速康复技术,更使得患者在更短的时间内实现无痛化快速康复。这些技术的优化组合应用被称为“极致软镜技术”,即医务人员通过完全经自然腔道的多种先进技术及设备加持下的RIRS配合舒适化医疗的诊疗理念,实现对肾结石患者最高的清石率、最小的并发症、最少的康复时间和全程舒适无痛化的诊疗目标。

极致软镜技术的概念包含的最重要内容是:完全经自然腔道处理各种肾结石;最高的清石率、最小的并发症、最快康复和全程舒适化无痛化。实现极致软镜技术需要施术者对输尿管软镜的操作十分熟练,并且清晰地掌握肾集合系统结构,特别是针对以下技术要点:①术前评估,包括患者结石负荷(包括结石CT值)、集合系统解剖结构、尿路感染状态、术前是否服用抗凝药物等;②术中各种设备技术的合理使用,包括使用直径合适的负压末端可弯曲软镜鞘、术中采用智能控制的灌注及吸引一体化装置、采用碎石能力更强的激光进行碎石、碎石后进行在软镜引导下对负压鞘末端进行移位以清石;③围手术期舒适化管理及快速康复;④术后疗效评定及随访,建议采用腹部非增强CT进行评估,一般术后3 d及4周评估结石清石率。

极致软镜技术有着广阔的前景和未来,多种新型技术和治疗理念可以通过联合应用发挥“1+1>2”的效果,从而提升其碎石清石能力和安全性,甚至可能取代PCNL在大负荷结石治疗中的主导地位。目前极致软镜技术理念还在初级阶段,还缺乏高质量证据证明其优越性。因此需要整合关键性技术,形成标准化流程,并设计多中心随机对照研究,比较其与传统RIRS及PCNL技术在大负荷结石方面的疗效。

2 肾结石防治的基础研究

2.1 研究现状

相对于肾结石防治的临床研究所取得的丰硕成果,肾结石的基础研究尤其是肾结石形成的分子学机制研究相关的临床转化成果则稍显薄弱。基础研究的具有产业化转化的成果更值得期待。

肾结石形成的分子学机制主要集中在诱发结石形成的晶体介导的肾小管上皮细胞损伤机制、免疫细胞调控机制、代谢调控机制等方面。本研究团队于2020年首次发现肾结石形成过程中晶体介导肾小管上皮细胞发生铁死亡[44];接着发现草酸晶体激活肾小管上皮细胞自噬导致NCOA4引发的铁蛋白吞噬,从而发生细胞铁死亡[45];另一项研究结果表明草酸晶体介导的肾小管上皮细胞外泌体AMBRA1通过旁分泌效应激活邻近细胞的铁死亡[46];褪黑素通过AMPK信号增强PINK1调节的线粒体自噬,从而减少肾小管上皮细胞铁死亡,发挥对肾结石保护作用[47]。近期本团队还设计了一种靶向晶体介导的肾小管上皮细胞内GPX4的CRISPR-dCas13d-eIF4G系统,该系统可以在不改变转录的情况下选择性地促进GPX4蛋白质表达上调,从而减轻肾结石中的肾小管上皮细胞铁死亡[48]。还有其他学者在草酸钙肾结石中肾小管上皮细胞铁死亡机制也有许多成果报告,这些研究共同为肾结石相关的铁死亡的药物研发提供了丰富的理论依据。细胞凋亡作为细胞程序性死亡的经典方式,近几年热度仍然很高,诸如miR-184/Rap1、FKBP5/NF-κB信号等新发现为肾结石中肾小管上皮细胞凋亡机制添加了新的见解[49-50]。另外,RIPK3或者MLKL介导的坏死性凋亡、NLRP3-GSDMD信号介导的细胞焦亡参与草酸钙肾结石形成的新机制也被报道[51-53]

近年来以巨噬细胞为代表的免疫调控机制在肾结石中越来越受重视。过去,巨噬细胞在肾结石中的作用往往集中在晶体吞噬、炎症损伤、上皮细胞调控等方面。本研究团队发现肾小管上皮细胞内FKBP5/NF-κB促进肾巨噬细胞炎性极化从而参与草酸钙肾结石的发生发展[50]。Yuan TH等[54]发现肾巨噬细胞STAT6通过抑制脂肪酸氧化而减少巨噬细胞炎性极化从而抑制肾结石的形成。近期,He J等[55]发现肾髓质巨噬细胞通过整合素β1与肾小管上皮细胞连接而形成上皮样突起,从而吞噬肾小管腔内晶体颗粒,这种主动迁移“监测”和吞噬肾小管腔内晶体的方式为肾结石的形成机制打开了新的局面。

代谢调控机制在肾结石形成过程也扮演着重要的角色。近年来代谢组学分析技术的普及让学者们发现越来越多的代谢调控机制,特别是脂肪酸代谢机制。Wang R等[56]发现在草酸钙肾结石患者的尿液和血清中棕榈酸水平明显增加,并且通过多不饱和脂肪酸和磷脂酸代谢失调导致肾小管上皮细胞发生铁死亡,从而促进草酸钙肾结石的形成。短链脂肪酸通过调节巨噬细胞和中性细胞浸润而减少小鼠肾脏草酸钙晶体形成[57]。琥珀酸通过抗炎、抑制细胞黏附和成骨分化而抑制肾结石形成[58]

基础研究的实验模型对揭示草酸钙肾结石形成机制和药物开发有着重要的战略意义。目前常用的草酸钙肾结石的体外实验模型是以草酸钙晶体干预HK-2细胞为代表的细胞-晶体反应模型[46],体内实验模型是以乙二醇干预SD大鼠[44]和乙醛酸干预C57BL/6小鼠[50]为代表的诱发性结石动物模型。然而,这种诱发性结石动物模型是否真正切合草酸钙肾结石形成的病理过程还未可知。在这种担忧下,有研究总结了狗、猫、水濑、亚洲小爪水獭、雪貂等大型动物的肾结石特点,为大型动物成为自发性肾结石动物模型打开了新的局面[59]

2.2 研究前景

基础研究对肾结石的防治至关重要。然而,数十年的基础研究最终形成临床转化的研究成果寥寥无几。因此,泌尿外科学者对肾结石的基础研究的方向和路径应该做出改变、另辟蹊径,从以下几个方面对肾结石形成机制进行深入探究可能会实现良性的科技成果转化。

首先,肾结石的晶体学研究大有可为。结石晶体是如何形成的,机体的保护机制又是如何清除结石晶体的;在不同条件下,同一组分可能会由于优势晶面和晶体成核、生长途径的不同而形成结构差异很大的晶体,不同结构的晶体对肾小管上皮细胞造成的损伤及其机制各异[60]。随着科学技术和实验设备的发展,将越来越有希望从肾结石晶体的晶面、晶向和生长模式等方面入手以阐明肾结石的形成和发展机制。

其次,机体对外来入侵带来的损伤向来具有很强的修复能力,肾小管上皮细胞也不例外[61]。草酸、钙、尿酸等晶体作用于肾小管上皮细胞所致炎症损伤应该很快得到修复;为什么肾结石形成过程中肾小管上皮细胞的损伤修复平衡被打破,肾小管上皮细胞修复的功能被抑制,直至晶体不断损伤肾小管上皮细胞且晶体黏附、聚集、生长形成结石,此路径应该引起高度重视;特别是巨噬细胞本身对晶体吞噬作用[55],以及巨噬细胞-肾小管上皮细胞交互的抗炎作用[50]

另外,肾结石基础研究的实验模型也应引起关注。最符合人体肾结石状态的模型是结石自然形成的大动物模型如狗、猫、水濑、亚洲小爪水獭、雪貂等[59]。地质生物学研究显示草酸钙结石在自然形成时会经历多次溶解和重塑,这种生物矿化过程与地质环境的成岩相变类似[62]。因此,结合生物矿化理念的自然形成的结石动物模型可能会对肾结石防治研究带来重大的突破,这种医学联合矿物学、地球化学、生物学、仿生学等学科的交叉基础研究将会是未来的主流趋势[63-64]

肾结石防治研究的最终服务对象是肾结石患者,基于临床角度发现问题,然后把问题带到临床研究和基础研究进行设计和实验,接着把研究的成果进行转化,最终应用到临床服务于患者,这种肾结石研究模式是应该大力提倡的。

参考文献

[1]

杨嗣星,廖文彪,宋 超,. 湖北省尿路结石患者的临床流行病学调查[J]. 中华泌尿外科杂志201839(9):647-650.

[2]

Yang SXLiao WBSong Cet al. Survey of clinical epidemiology of urinary calculi patients in Hubei Province[J]. Chin J Urol201839(9):647-650.

[3]

Ye ZQZeng GHYang Het al. The status and characteristics of urinary stone composition in China[J]. BJU Int2020125(6):801-809.

[4]

张古沐阳,石 冰,薛华丹,. 双源双能量CT前瞻性分析体内泌尿系结石的主要成分[J]. 放射学实践201833(1):55-59.

[5]

Zhang GMYShi BXue HDet al. A prospective study of dual-source dual-energy CT for determining major composition of urinary stones in vivo [J]. Radiol Pract201833(1):55-59.

[6]

Kahani MHariri Tabrizi SKamali-Asl Aet al. A novel approach to classify urinary stones using dual-energy kidney,ureter and bladder (DEKUB)X-ray imaging[J]. Appl Radiat Isot2020164:109267.

[7]

Rompsaithong UJongjitaree KKorpraphong Pet al. Characterization of renal stone composition by using fast kilovoltage switching dual-energy computed tomography compared to laboratory stone analysis:a pilot study[J]. Abdom Radiol201944(3):1027-1032.

[8]

叶冬晖. 基于双能量CT和人工智能技术精准分析体内泌尿系结石成分的研究[D]. 成都:四川大学,2021

[9]

Ye DH. Accurate analysis of urinary stone compositions in vivo using dual-energy CT and artificial intelligence[D]. Chengdu:Sichuan University,2021.

[10]

Manzoor MAPAgrawal AKSingh Bet al. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones[J]. PLoS One201914(3):e0214003.

[11]

Del Carmen Cano García M, Cobos RCBohorquez ÁVet al. A randomized,double-blind,placebo-controlled clinical trial of the use of hydroxycitric acid adjuvant to shock wave lithotripsy therapy in patients with calcium stones. Stone fragmentation results[J]. Urolithiasis202351(1):83.

[12]

Jalali SBorumandnia NBasiri Aet al. A comparison of boron supplement and tamsulosin as medical expulsive therapy for urinary stones after extracorporeal shock wave lithotripsy:a randomized controlled clinical trial[J]. Biol Trace Elem Res2023201(11):5126-5133.

[13]

Ji MHZhang XHan Xet al. Effect of adjunctive drug therapy on early expulsion of distal ureteral calculi after extracorporeal shock wave lithotripsy[J]. Zhonghua Yi Xue Za Zhi2023103(12):924-926.

[14]

Li YPLv JL. Effect of external physical vibration lithecbole in obese patients with lower pole stones <15 mm after ESWL:a single-centre,randomized,open label clinical trial[J]. Front Med202310:1101811.

[15]

Zhang YFXu CBWang YZet al. When is the best time to perform external physical vibration lithecbole(EPVL) after retrograde intrarenal surgery(RIRS):a multi-center study based on randomized controlled trials[J]. Urolithiasis202048(6):533-539.

[16]

Xu ZHTang QLZhou Set al. Use of extracorporeal physical vibration lithecbole through greater sciatic foramen for treatment of distal ureteral calculi[J]. J Endourol202236(1):143-150.

[17]

吴海洋,王 欢. 泌尿系结石内镜手术治疗进展[J]. 浙江医学202345(15):1578-1582,1597.

[18]

Wu HYWang H. Progress in endoscopic surgery for urinary calculi[J]. Zhejiang Med J202345(15):1578-1582,1597.

[19]

Yue GDou SWCai Cet al. A novel distal active flexible vacuum-assisted ureteric access sheath in retrograde intrarenal surgery[J]. Urology2023179:204-205.

[20]

Chen HQiu XXDu CCet al. The comparison study of flexible ureteroscopic suctioning lithotripsy with intelligent pressure control versus minimally invasive percutaneous suctioning nephrolithotomy in treating renal calculi of 2 to 3 cm in size[J]. Surg Innov201926(5):528-535.

[21]

Mazzucchi EMarchini GSBerto FCGet al. Single-use flexible ureteroscopes:update and perspective in developing countries. A narrative review[J]. Int Braz J Urol202248(3):456-467.

[22]

廖文彪,曾国华,邢金春,. 采用国产一次性电子输尿管软镜与可重复使用电子输尿管软镜治疗上尿路结石的前瞻性多中心随机对照研究[J]. 中华泌尿外科杂志20228(5):374-378.

[23]

Liao WBZeng GHXing JCet al. A prospective multicenter randomized controlled clinical trial study of a domestic single-use digital flexible ureteroscope versus a reusable digital flexible ureteroscope for the treatment of upper urinary tract stones[J]. Chin J Urol20228(5):374-378.

[24]

朱 玮,莫承强,陈玢屾,. 一次性输尿管软镜与可重复使用输尿管软镜治疗上尿路结石疗效的前瞻性多中心随机对照研究[J]. 中华泌尿外科杂志202041(4):287-291.

[25]

Zhu WMo CQChen FSet al. Disposable versus reusable flexible ureteroscopes for treatment of upper urinary stones:a multicenter prospective randomized study[J]. Chin J Urol202041(4):287-291.

[26]

Han HKim JMoon YJet al. Feasibility of laser lithotripsy for midsize stones using robotic retrograde intrarenal surgery system easyUretero in a porcine model[J]. J Endourol202236(12):1586-1592.

[27]

杨嗣星,夏 樾,叶章群. 软镜镜检术在上尿路来源血尿诊治中的地位和作用[J]. 中华泌尿外科杂志201940(9):641-644.

[28]

Yang SXXia YYe ZQ. The role of flexible ureteroscopy in diagnosis and treatment of hematuria from upper urinary tract[J]. Chin J Urol201940(9):641-644.

[29]

Yang SXDong CTSong Cet al. Femtosecond laser lithotripsy:a novel alternative for kidney stone treatment?Evaluating the safety and effectiveness in an ex vivo study[J]. Urolithiasis202351(1):118.

[30]

Ibrahim AElhilali MMFahmy Net al. Double-blinded prospective randomized clinical trial comparing regular and Moses modes of holmium laser lithotripsy[J]. J Endourol202034(5):624-628.

[31]

Ulvik ØÆsøy MSJuliebø-Jones Pet al. Thulium fibre laser versus holmium:YAG for ureteroscopic lithotripsy:outcomes from a prospective randomised clinical trial[J]. Eur Urol202282(1):73-79.

[32]

刘 成,邵 怡,夏 磊,. 超脉冲光纤铥激光碎石术腔内治疗泌尿系结石的有效性和安全性研究[J]. 中华医学杂志2023103(30):2302-2306.

[33]

Liu CShao YXia Let al. Efficacy and safety of superpulse thulium laser lithotripsy in the intracavitary treatment of urinary calculi[J]. Natl Med J China2023103(30):2302-2306.

[34]

李 彬,杨嗣星. 上尿路结石手术中肾盂内压的影响因素[J]. 国际泌尿系统杂志202141(6):1098-1100.

[35]

Li BYang SX. Influencing factors of intrarenal pressure in upper urinary calculi surgery[J]. Int J Urol Nephrol202141(6):1098-1100.

[36]

Deng XLSong LMXie DHet al. A novel flexible ureteroscopy with intelligent control of renal pelvic pressure:an initial experience of 93 cases[J]. J Endourol201630(10):1067-1072.

[37]

He XLHuang XZhai QLet al. Retrograde intrarenal surgery with intelligent control of renal pelvic pressure for staghorn calculi:a case report[J]. Front Med202411:1321184.

[38]

Bhojani NKoo KCBensaadi Ket al. Retrospective first-in-human use of the LithoVue™ Elite ureteroscope to measure intrarenal pressure[J]. BJU Int2023132(6):678-685.

[39]

李 德,杨嗣星. 三维重建技术在重新认识肾集合系统结构中的价值[J]. 国际泌尿系统杂志202242(1):142-145.

[40]

Li DYang SX. Value of three-dimensional reconstruction technology in re-understanding the structure of renal collection system[J]. Int J Urol Nephrol202242(1):142-145.

[41]

黄正星. 多层螺旋CT三维成像下肾盂、肾盏及肾窦的解剖研究[D]. 衡阳:南华大学,2016

[42]

Huang ZX. MsCT three-dimensional imaging of renal pelvis and calyces and renal sinus anatomical study[D]. Hengyang:University of South China,2016.

[43]

Atalay HACanat HLÜlker Vet al. Impact of personalized three-dimensional-3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery:a pilot study[J]. Int Braz J Urol201743(3):470-475.

[44]

Kirecci SLIlgi MYesildal Cet al. The impact of the pelvicalyceal anatomy characteristics on the prediction of flexible ureteroscopy outcomes[J]. Urol Ann202113(2):105-110.

[45]

Marroig BFavorito LAFortes MAet al. Lower pole anatomy and mid-renal-zone classification applied to flexible ureteroscopy:experimental study using human three-dimensional endocasts[J]. Surg Radiol Anat201537(10):1243-1249.

[46]

Sari SOzok HUTopaloglu Het al. The association of a number of anatomical factors with the success of retrograde intrarenal surgery in lower calyceal stones[J]. Urol J201714(4):4008-4014.

[47]

Zhou JFJin JLi Xet al. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-L-proline-induced calcium oxalate urolithiasis in rats[J]. Urolithiasis201846(3):231-241.

[48]

曲柄衡,童晓鹏. 小檗碱保护糖尿病肾病肾脏作用机制研究进展[J]. 中山大学学报(医学科学版)202445(3):354-360.

[49]

Qu BHTong XP. Research progress on the mechanisms of berberine protecting the kidney in diabetic kidney disease[J]. J Sun Yat Sen Univ Med Sci202445(3):354-360.

[50]

Matthew LVictoria BMeekah Cet al. mp03-06 oxalate decarboxylase enzyme reduces hyperoxaluria in an animal model that mimics primary hyperoxaluria[J]. J Urol2019201():e22.

[51]

Langman CBGrujic DPease RMet al. A double-blind,placebo controlled,randomized phase 1 cross-over study with ALLN-177,an orally administered oxalate degrading enzyme[J]. Am J Nephrol201644(2):150-158.

[52]

Wu FCheng YYZhou JFet al. Zn2+ regulates human oxalate metabolism by manipulating oxalate decarboxylase to treat calcium oxalate stones[J]. Int J Biol Macromol2023234:123320.

[53]

Dong CTSong CHe ZQet al. Protective efficacy of Schizandrin B on ameliorating nephrolithiasis via regulating GSK3β/Nrf2 signaling-mediated ferroptosis in vivo and in vitro [J]. Int Immunopharmacol2023117:110042.

[54]

Xu YXLiang HMao XKet al. Molecular mechanism of rhizoma polygonati in the treatment of nephrolithiasis:network pharmacology analysis and in vivo experimental verification[J]. Urolithiasis202452(1):35.

[55]

Mammate NEl Oumari FEImtara Het al. The Anti-urolithiatic effect of the roots of Saussurea costus(Falc.) Lipsch agonist ethylene glycol and magnesium oxide induced urolithiasis in rats[J]. Saudi Pharm J202432(3):101967.

[56]

He ZQLiao WBSong QLet al. Role of ferroptosis induced by a high concentration of calcium oxalate in the formation and development of urolithiasis[J]. Int J Mol Med202147(1):289-301.

[57]

Song QLLiao WBChen Xet al. Oxalate activates autophagy to induce ferroptosis of renal tubular epithelial cells and participates in the formation of kidney stones[J]. Oxid Med Cell Longev20212021:6630343.

[58]

Su XZSong CHe ZQet al. Ambra1 in exosomes secreted by HK-2 cells damaged by supersaturated oxalate induce mitophagy and autophagy-ferroptosis in normal HK-2 cells to participate in the occurrence of kidney stones[J]. Biochim Biophys Acta Mol Cell Res20241871(1):119604.

[59]

Zhou JWMeng LCHe ZQet al. Melatonin exerts a protective effect in ameliorating nephrolithiasis via targeting AMPK/PINK1-Parkin mediated mitophagy and inhibiting ferroptosis in vivo and in vitro [J]. Int Immunopharmacol2023124(Pt A):110801.

[60]

He ZQSong CLi Set al. Development and application of the CRISPR-dcas13d-eIF4G translational regulatory system to inhibit ferroptosis in calcium oxalate crystal-induced kidney injury[J]. Adv Sci202411(17):e2309234.

[61]

Han MZhang DHJi JWet al. Downregulating miR-184 relieves calcium oxalate crystal-mediated renal cell damage via activating the Rap1 signaling pathway[J]. Aging202315(24):14749-14763.

[62]

Song QLSong CChen Xet al. FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion,apoptosis and macrophage M1 polarization via inhibition of NF-κB signaling[J]. Cell Mol Life Sci202380(10):301.

[63]

Hou BBLiu MMChen Yet al. Cpd-42 protects against calcium oxalate nephrocalcinosis-induced renal injury and inflammation by targeting RIPK3-mediated necroptosis[J]. Front Pharmacol202213:1041117.

[64]

Prajapati STomar BSrivastava Aet al. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation[J]. Life Sci2021271:119193.

[65]

Chen YYang SSKong HLet al. Oxalate-induced renal pyroptotic injury and crystal formation mediated by NLRP3-GSDMD signaling in vitro and in vivo [J]. Mol Med Rep202328(5):209.

[66]

Yuan THXia YQPan SYet al. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation[J]. Inflamm Res202372(12):2111-2126.

[67]

He JCao YYZhu Qet al. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction[J]. Immunity202457(1):106-123.

[68]

Wang RZhang JDRen HTet al. Dysregulated palmitic acid metabolism promotes the formation of renal calcium-oxalate stones through ferroptosis induced by polyunsaturated fatty acids/phosphatidic acid[J]. Cell Mol Life Sci202481(1):85.

[69]

Jin XJian ZYChen XTet al. Short chain fatty acids prevent glyoxylate-induced calcium oxalate stones by GPR43-dependent immunomodulatory mechanism[J]. Front Immunol202112:729382.

[70]

Zhang XZLei XXJiang YLet al. Application of metabolomics in urolithiasis:the discovery and usage of succinate[J]. Signal Transduct Target Ther20238(1):41.

[71]

Alford AFurrow EBorofsky Met al. Animal models of naturally occurring stone disease[J]. Nat Rev Urol202017(12):691-705.

[72]

苏潇哲,宋钱林,杨嗣星. 肾结石微观结构和晶体结构的研究现状与进展[J]. 中华泌尿外科杂志20228(12):953-956.

[73]

Su XZSong QLYang SX. Research status and progress of crystal structure of kidney stone[J]. Chin J Urol20228(12):953-956.

[74]

Cao XYWang JCZhang TYet al. Chromatin accessibility dynamics dictate renal tubular epithelial cell response to injury[J]. Nat Commun202213(1):7322.

[75]

Sivaguru MSaw JJWilson EMet al. Human kidney stones:a natural record of universal biomineralization[J]. Nat Rev Urol202118(7):404-432.

[76]

Sivaguru MLieske JCKrambeck AEet al. GeoBioMed sheds new light on human kidney stone crystallization and dissolution[J]. Nat Rev Urol202017(1):1-2.

[77]

Eren EKarabulut YYEren Met al. Mineralogy,geochemistry,and micromorphology of human kidney stones(urolithiasis) from Mersin,the southern Turkey[J]. Environ Geochem Health202345(7):4761-4777.

基金资助

国家自然科学基金资助项目(82070723)

AI Summary AI Mindmap
PDF (567KB)

524

访问

0

被引

详细

导航
相关文章

AI思维导图

/