细胞焦亡在糖尿病肾脏疾病中的作用机制及研究进展

田蕾 ,  赵文景

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (08) : 937 -941.

PDF (910KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (08) : 937 -941. DOI: 10.13406/j.cnki.cyxb.003557
综述

细胞焦亡在糖尿病肾脏疾病中的作用机制及研究进展

作者信息 +

Mechanism of action and research progress of pyroptosis in diabetic kidney disease

Author information +
文章历史 +
PDF (931K)

摘要

细胞焦亡主要表现为细胞肿胀,形成缺乏离子选择性的孔隙,引起“焦亡小体”样泡状突起,最终造成质膜裂解,释放炎症因子。细胞焦亡主要由炎性半胱天冬酶(cysteinylaspartate specific proteinase,caspase)介导,包括由caspase-1介导的经典焦亡途径和caspase-4/5/11介导的非经典焦亡途径,通过触发下游的消皮素D(gasdermin,GSDMD),引起细胞膜穿孔,从而释放细胞内容物和大量的炎性细胞因子,诱发细胞焦亡。近年来,越来越多的证据表明细胞焦亡参与糖尿病肾脏疾病(diabetic kidney disease,DKD)疾病进展,可能成为DKD的潜在治疗靶点。本文将对细胞焦亡在DKD疾病进展的相关研究进行综述,总结现阶段肾脏固有细胞焦亡在DKD发病机制中的作用及靶向细胞焦亡的相关药物研究,以期为DKD疾病机制研究与治疗策略的更新提供新的思路。

Abstract

Cell pyroptosis is characterized by cellular swelling and the formation of ion non-selective pores,leading to the emergence of “pyroptotic body-like” vesicular protrusions,ultimately resulting in plasma membrane lysis and the release of inflammatory factors. Cell pyroptosis is mainly mediated by inflammatory cysteinyl aspartate specific proteinase(caspase),including the classical pyroptotic pathway mediated by caspase-1 and the non-classical pyroptotic pathway mediated by caspase-4/5/11. This process triggers downstream gasdermin to cause cell membrane perforation,thus leading to the release of cellular contents and numbers of inflammatory cytokines and inducing cell pyroptosis. In recent years,increasing evidence suggests that cell pyroptosis is involved in the progression of diabetic kidney disease(DKD) and may serve as a potential therapeutic target for DKD. This article provides a review of the relevant research on cell pyroptosis in the progression of DKD and summarizes the current understanding of the role of intrinsic renal cell pyroptosis in the pathogenesis of DKD and drug studies targeting cell pyroptosis,aiming to offer new insights for updating research on the mechanisms and treatment strategies of DKD.

Graphical abstract

关键词

糖尿病肾脏疾病 / 细胞焦亡 / NOD样受体热蛋白结构域相关蛋白3

Key words

diabetic kidney disease / pyroptosis / NOD-like receptor thermal protein domain associated protein 3

引用本文

引用格式 ▾
田蕾,赵文景. 细胞焦亡在糖尿病肾脏疾病中的作用机制及研究进展[J]. 重庆医科大学学报, 2024, 49(08): 937-941 DOI:10.13406/j.cnki.cyxb.003557

登录浏览全文

4963

注册一个新账户 忘记密码

糖尿病肾脏疾病(diabetic kidney disease,DKD)是糖尿病最常见和最严重的微血管并发症之一。随着糖尿病患病率的不断飙升[1-2],DKD正逐渐成为我国慢性肾脏病的主要病因[3]。然而,目前国际上对DKD缺乏特效药物和治疗方案,除传统的降糖、降压、降脂及减少蛋白摄入外,主要是应用肾素-血管紧张素-醛固酮系统抑制剂减少尿蛋白,但仍有部分患者继续发展至终末期肾病。因此,针对DKD新的治疗靶点革新和新药研发,具有重要的科学意义和社会效益。
DKD是一种由多种炎症因子介导的具有复杂病理机制的代谢性疾病。高血糖、脂质代谢紊乱、氧化应激、晚期糖基化终产物(advanced glycation end products,AGEs)等多种因素贯穿于DKD疾病进展的始终。值得注意的是,近期研究证实,高血糖、脂肪酸等损伤相关分子可以通过细胞内某些特定的模式识别受体(pattern recognition receptor,PRRs),诱导肾脏固有细胞发生焦亡,导致肾脏结构损伤和功能下降,加速DKD疾病进展。这提示细胞焦亡可能成为DKD潜在治疗靶点[4]。焦亡作为近年来新被发现的一种裂解性的程序性坏死方式,其主要特征是细胞膨胀变圆及细胞膜鼓泡破裂,从而引起细胞内容物释放和强烈的炎症反应激活[5-6]。本文系统综述了近年来有关细胞焦亡参与DKD疾病进展的相关报道,为DKD疾病发病机制的研究与治疗策略的更新提供新思路。

1 细胞焦亡的概述

细胞焦亡,是一种与炎症反应密切相关的程序性细胞死亡形式。除了焦亡,程序性细胞死亡形式还包括凋亡、铁死亡、自噬、坏死等,它们的启动取决于不同生化机制和信号传导途径[7-11]。焦亡具有细胞凋亡和坏死的特点,包括核收缩、DNA断裂和磷脂外翻等,此外,通过扫描电镜观察发现,焦亡的细胞出现肿胀,并可以形成缺乏离子选择性的孔隙,形成类似凋亡小体的“焦亡小体”样泡状突起,最终造成质膜裂解,释放炎症因子。2001年,Cookson BT和Brennan MA[12]首先将这种依赖半胱氨酸天冬氨酸蛋白酶(cysteinylaspartate specific proteinase-1,caspase-1)的凋亡信号通路命名为“细胞焦亡”。随着研究的深入,人们发现caspase-4/5/11也能触发细胞焦亡,被认为是焦亡的非经典通路。焦亡的核心是激活NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎性小体,NLRP3触发消皮素D(gasdermin,GSDMD),引起细胞膜上形成GSDMD膜孔,迅速造成细胞膜破裂和细胞内容物释放,如促炎因子白细胞介素-1β(interleukin-1β,IL-1β)和白细胞介素-18(interleukin-18,IL-18)从膜孔中流出,引起炎症反应激活。因此,GSDMD被称为细胞焦亡的执行者,是细胞焦亡的“杀手蛋白”,而细胞内NLRP3炎症小体活化是经典细胞焦亡启动的“开关”[13-14]

2 DKD疾病进展中细胞焦亡的信号通路

2.1 细胞焦亡的经典途径

在经典的细胞焦亡途径中,受病原相关与损伤相关分子模式的刺激,促进了NLRP3炎性小体组装激活[15-16]。NLRP3炎性小体作为位于细胞质中的多蛋白复合物,由模式识别受体NLRP3、凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a CARD,ASC)和caspase-1组成,当其组装激活后,可以引起caspase-1的前体形式pro-caspase-1切割成其激活形式cleaved caspase-1[17-18]。一方面,活化的casapase-1是NLRP3炎性体的功能单位,可将IL-1β和IL-18的前体pro-IL-1β和pro-IL-18切割成成熟形式,加剧炎症反应[19-20]。另一方面,caspase-1激活并切割膜蛋白GSDMD,使激活的GSDMD释放N段的结构域,GSDMD的N末端具有成孔活性,破坏膜的完整性,从而触发细胞内容物和大量促炎细胞因子释放,导致炎症反应扩大,造成细胞焦亡(图1[1921]。NLRP3/caspase-1介导的焦亡经典途径在DKD的疾病进展中发挥重要作用,如研究发现,足细胞特异性表达NLRP3功能获得性突变体(Nlrp3A350V)的高血糖小鼠中,肾脏病理损伤加重,主要表现为白蛋白尿增加、肾小球系膜扩张和肾小球基底膜厚度增加。相比之下,足细胞特异性 NLRP3或caspase-1敲除的糖尿病小鼠模型表现肾保护作用。发人深思的是足细胞特异性NLRP3缺陷的小鼠具有完全保护性,而足细胞特异性caspase-1缺陷仅具有部分保护性[22]

2.2 细胞焦亡的非经典途径

2011年,Kayagaki N等[23]最先发现非经典细胞焦亡途径。非典型途径是由人体内caspase-4和caspase-5以及小鼠体内的caspase-11介导[24]。研究证实,caspase-4/5/11的激活是由于感知并识别脂多糖(lipopolysaccharide,LPS),继而触发其快速寡聚过程,活化的caspase-4/5/11作为四聚体,能够裂解纯化的重组GSDMD,从而促进IL-1β和IL-18活化并形成成熟的IL-1β和IL-18[25]。同样,GSDMD的N端结构域被激活在细胞膜打孔,引起细胞内IL-1β和IL-18的大量释放,造成细胞焦亡(图1)。非经典的细胞焦亡途径在DKD疾病进展中也扮演重要角色。研究发现DKD小鼠足细胞中caspase-11,GSDMD和IL-1β的表达增加,造成足细胞丢失,巨噬细胞浸润、蛋白尿的增加,而高糖处理的人和小鼠足细胞中caspase-11或caspase-4、GSDMD-N、IL-1β及IL-18的表达明显增加,引起足细胞焦亡损伤,提示caspase-11/4介导的细胞焦亡加剧了DKD的病理损伤[26-27]

综上,虽然经典与非经典的细胞焦亡途径由不同的信号传导途径介导,但殊途同归,均通过裂解GSDMD,促进其释放N端的结构域,然后导致细胞膜形成膜孔,从而释放大量的促炎细胞因子,最终造成细胞焦亡,加速DKD疾病进展[28]

3 DKD 疾病进展中肾脏固有细胞焦亡

肾脏固有细胞作为糖尿病肾脏疾病损伤重要靶点,主要包括肾小球系膜细胞、足细胞、内皮细胞以及肾小管上皮细胞[29]。其中系膜细胞、足细胞以及内皮细胞是构成肾小球滤过膜结构的基础,参与调节肾小球滤过功能。肾小管上皮细胞主要参与物质的重吸收和分泌[30]。因此肾脏固有细胞焦亡,可以导致肾小球滤过功能下降,引起蛋白尿。此外,细胞焦亡引起的持续炎症反应易导致肾脏胶原沉积,细胞外基质生成与降解失衡,造成肾实质逐渐硬化,瘢痕形成,肾小球硬化与肾间质纤维化形成,最终导致肾功能衰竭。故肾脏固有细胞的焦亡损伤在DKD疾病进展中具有重要作用,下面将对DKD疾病进展中肾脏固有细胞焦亡进行分述:

3.1 DKD疾病进程中的足细胞焦亡

足细胞作为附着在肾小球基底膜外高度分化的细胞,相邻的足细胞之间足突相互交叉嵌合,构成了肾小球滤过膜的最外层。最新研究发现,通过高脂饮食联合STZ注射制备的糖尿病模型小鼠的足细胞caspase-11和GSDMD-N的表达水平明显升高,伴随着足细胞标志蛋白podocin和nephrin的表达减少,足细胞表现出足突的丢失和融合,炎性细胞因子核因子κB(nuclear factor kappa-B,NF-κB)、IL-1β和IL-18表达升高,并表现出巨噬细胞浸润、肾小球基质扩张以及尿白蛋白肌酐比(urinary albumin to creatinine ratio,UACR)增加,而糖尿病模型小鼠的上述所有病理改变均因caspase-11或 GSDMD的敲除而减弱。此外,高糖(30 mmol/L)处理培养的人和小鼠足细胞,caspase-11或caspase-4、GSDMD-N、NF-κB、IL-1β和IL-18的表达水平明显增加,而通过siRNA将caspase-4或GS​​DMD敲低则降低了上述焦亡相关因子的表达水平[27]。且在DKD患者肾活检组织中也发现caspase-1和GSDMD表达水平升高[31]

3.2 DKD疾病进程中的肾小管上皮细胞焦亡

肾小管上皮细胞(tubular epithelial cells,TECs)负责肾脏的重吸收,将部分或全部的水和几种溶质从肾小管转移到血液中,保留有用物质,并有效地去除有害和多余物质。在 DKD 高糖状态下,TECs容易发生代谢紊乱、炎症反应以及血流动力学改变,造成活性氧(reactive oxygen species,ROS)和多种炎症因子释放,继而导致肾间质的炎症反应和纤维化损伤。研究发现,DKD模型小鼠肾小管及高糖诱导的人肾小管上皮细胞HK-2中焦亡相关的NLRP3、caspase1、GSDMD表达上调。HK-2细胞焦亡也促进Ⅳ型胶原和纤连蛋白产生,加速DKD肾间质纤维化损伤[32]。研究证实,NLRP3在转化生长因子-β1(transforming growth factor,TGF-β1)刺激下表达明显升高,并与上皮-间充质转化(epithelial-mesenchymal transition,EMT)、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)的表达相关。在NLRP3敲除的小鼠肾小管上皮细胞中TGF-β1表达下调,从而抑制了EMT,降低MMP-9和a-SMA的表达,进一步证实肾小管上皮细胞的焦亡损伤促进DKD肾间质纤维化[33]

3.3 DKD疾病进程中的肾小球内皮细胞焦亡

在DKD状态下,肾小球内皮细胞(glomerular endothelial cells,GECs)损伤通常发生在早期。内皮细胞始终暴露在血液的环境中,极易受到血流中异常成分的干扰,故血液的高糖状态和过量的炎症因子表达极易对内皮细胞造成影响。既往研究发现糖尿病患者和小鼠的肾脏组织切片中GECs可出现NLRP3炎症小体和活化的caspase-1共定位,提示糖尿病状态下,GECs发生焦亡损伤[34]。研究证实,在高糖诱导的人GECs中发现激活的硫氧还蛋白互作蛋白(thioredoxin-interactingprotein,TXNIP)/NLRP3信号通路,造成了GECs的细胞焦亡[35]。此外,在DKD状态下,中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)诱导GECs膜上的孔洞形成,参与细胞膜功能的多个基因表达失调,焦亡相关蛋白NLRP3,ASC表达增加[36]。内皮细胞是肾小球滤过屏障的关键组成部分,故研究证实内皮细胞焦亡损伤会导致肾小球滤过功能破坏,UACR增加,加速DKD疾病进展[36]

4 靶向细胞焦亡延缓DKD疾病进展的药物研究

最新研究显示,胰高糖素样肽-1受体激动剂(glucagonlike peptide-1 receptor agonist,GLP-1RA)降糖药利拉鲁肽和索马鲁肽的肾脏保护作用可能是通过调节NLRP3炎性小体表达,抑制足细胞焦亡来实现的,且利拉鲁肽和索马鲁肽在抑制细胞焦亡方面无明显差异[37]。此外,研究发现具有降低肾脏结局事件的一线推荐降糖药钠-葡萄糖协同转运蛋 白 2(sodium-dependent glucose transporters 2,SGLT-2)抑制剂达格列净可以通过调控血红素氧合酶1(heme oxygenase-1,HO-1)/NLRP3轴,抑制caspase-1的激活,减少IL-18和IL-1β表达,对抗足细胞焦亡,从而发挥降低DKD肾脏结局事件的药效[38]。DPP4抑制剂沙格列汀也表现出降低NLRP3/ASC活性,从而发挥延缓DKD疾病进展的效应机制[39-40]。上述降糖药物通过靶向调控细胞焦亡关键节点而发挥延缓DKD的作用,且独立于其降糖活性,提示细胞焦亡可能是干预DKD潜在靶点。中医药在靶向调控细胞焦亡,延缓DKD进展中也发挥重要作用,既往研究发现中药黄葵胶囊可以改善蛋白尿,改善肾功能,抑制EMT,其效应机制与调控Toll样受体4(Toll-like receptor 4,TLR4)/NF-κB信号通路,抑制NLRP3炎性小体活化有关[41]。中医复方如糖肾方、益肾排毒方等干预DKD疾病进展也与调控细胞焦亡密切相关[42-43]。中药的单体成分也在靶向调控细胞焦亡中有明显疗效。中药海藻的主要成分岩藻多糖可以通过调节AMP依赖的蛋白激酶[Adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK]/雷帕霉素靶蛋白C1(mammalian target of rapamycin1,mTORC1)/NLRP3信号轴,抑制NLRP3炎性小体激活,减弱足细胞焦亡损伤[44]。中药丹参的根茎中分离出来的二萜醌类亲脂性成分丹参酮Ⅱa可减轻肾损伤,改善db/db小鼠肾功能,降低蛋白尿,其效应机制与降低肾小球内皮的NLRP3、cleaved IL-1β、cleaved caspase-1和Txnip表达,抑制肾小球内皮细胞焦亡损伤有关[45]

综上所述,细胞焦亡是参与DKD疾病进展的重要机制之一,本文从细胞焦亡的概述、细胞焦亡的经典途径、非经典途径对细胞焦亡进行阐释。系统分析了肾脏固有细胞(足细胞、肾小管上皮细胞以及内皮细胞)焦亡在DKD疾病进展中作用。随着DKD疾病进展过程中焦亡的研究不断深入,细胞焦亡更像一把双刃剑:一方面,适度的细胞焦亡有利于保护肾脏免受外来刺激的损伤,另一方面,大量的肾脏固有细胞焦亡导致严重的炎症反应,成为加速DKD进展的主要因素。然而,DKD的发病机制复杂,细胞焦亡的发生机制也尚未完全被揭示[46-47]。仅DKD疾病进展中细胞焦亡的机制还有待完善,①未来可利用更多分子生物学方法探索caspase-1和GSDMD下游靶点参与DKD调控的具体机制。②肾脏固有细胞,肾小球系膜细胞的焦亡在DKD疾病进展中的机制仍不清楚,还有待结合在体与离体实验进行系统阐释。③基于NLRP3/caspase-1经典细胞焦亡通路,发现很多靶向细胞焦亡相关因子的药物及小分子阻断剂可以通过抑制焦亡,干预DKD疾病进展,未来可通过高通量筛选、多组学技术联合,筛选出更多可能药物或抑制剂,为DKD发病机制的探索及防治提供更多思路。④目前针对细胞焦亡的上游刺激因素尚未完全揭示,未来研究可更多地关注DKD的病理表现,深入挖掘造成肾固有细胞焦亡的不同上游因素,可能为DKD的发病机制和临床防治提供新的见解。

参考文献

[1]

International Diabetes Foundation. IDF Diabetes Atlas 2021(9th),[EB/OL].[2023-10-18].

[2]

Hu QCJiang LYan Qet al. A natural products solution to diabetic nephropathy therapy[J]. Pharmacol Ther2023241:108314.

[3]

Zhang LXLong JYJiang WSet al. Trends in chronic kidney disease in China[J]. N Engl J Med2016375(9):905-906.

[4]

Hutton HLOoi JDHoldsworth SRet al. The NLRP3 inflammasome in kidney disease and autoimmunity[J]. Nephrology20162(9):736-744.

[5]

陈丽香,李 顺,周晓辉. 程序性细胞坏死及细胞焦亡信号通路研究进展概述[J]. 中华微生物学和免疫学杂志202040(3):231-237.

[6]

Chen LXLi SZhou XH. Overview of necroptosis and pyroptosis signaling pathways[J]. Chin J Microbiol Immunol202040(3):231-237.

[7]

Shi JJGao WQShao F. Pyroptosis:gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci201742(4):245-254.

[8]

Strowig THenao-Mejia JElinav Eet al. Inflammasomes in health and disease[J]. Nature2012481(7381):278-286.

[9]

Fleisher TA : Apoptosis. Annals of allergy,asthma & immunology: official publication of the American College of Allergy[J]. Asthma & Immunology 199778(3):245-250.

[10]

Glick DBarth SMacLeod KF. Autophagy:cellular and molecular mechanisms[J]. J Pathol2010221(1):3-12.

[11]

Hirschhorn TStockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med2019133:130-143.

[12]

Christgen STweedell REKanneganti TD. Programming inflammatory cell death for therapy[J]. Pharmacol Ther2022232:108010.

[13]

Cookson BTBrennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol20019(3):113-114.

[14]

Zhu BCheng XBJiang YLet al. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells[J]. Diabetes Metab Syndr Obes202013:365-375.

[15]

Xie CSWu WLTang ANet al. lncRNA GAS5/miR-452-5p reduces oxidative stress and pyropto⁃ sis of high-glucose-stimulated renal tubular cells[J]. Diabetes Metab Syndr Obes201912:2609-2617.

[16]

Wu XXZhang HYQi Wet al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death Dis20189(2):171.

[17]

Liu CYao QHu TTet al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J]. Mol Ther Nucleic Acids202230:198-207.

[18]

Jo EKKim JKShin DMet al. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol201613(2):148-159.

[19]

Wu MHan WXSong Set al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice[J]. Mol Cell Endocrinol2018478:115-125.

[20]

He WTWan HQHu LCet al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res201525(12):1285-1298.

[21]

王石健,徐蒙娜,汪佳兵. gasdermin D和gasdermin E介导的细胞焦亡在肿瘤中的研究进展[J]. 中国临床药理学与治疗学202025(3):352-360.

[22]

Wang SJXu MNWang JB. Research progress of gasdermin D and gasdermin E-mediated pyroptosis in tumors[J]. Chin J Clin Pharmacol Ther202025(3):352-360.

[23]

Sborgi LRühl SMulvihill Eet al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J201635(16):1766-1778.

[24]

Shahzad KFatima SKhawaja Het al. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease[J]. Kidney Int2022102(4):766-779.

[25]

Kayagaki NWarming SLamkanfi Met al. Non-canonical inflammasome activation targets caspase-11[J]. Nature2011479(7371):117-121.

[26]

Shi JJZhao YWang YPet al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature2014514(7521):187-192.

[27]

Al Mamun AAra Mimi AWu YQet al. Pyroptosis in diabetic nephropathy[J]. Clin Chim Acta2021523:131-143.

[28]

Ito MDucasa GMMolina JDet al. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease[J]. Sci Rep202313(1):9616.

[29]

Cheng QPan JZhou ZLet al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy[J]. Acta Pharmacol Sin202142(6):954-963.

[30]

Han YCXu XXTang CYet al. Reactive oxygen species promote tubular injury in diabetic nephropathy:the role of the mitochondrial ros-txnip-nlrp3 biological axis[J]. Redox Biol201816:32-46.

[31]

黄衍恒,叶霖,黄小荣,. 肾脏固有细胞自噬对肾纤维化作用的研究进展[J]. 中华肾脏病杂志202238(3):247-253.

[32]

Huang YHYe LHuang XRet al. Research progress on the effect of renal resident cells autophagy on renal fibrosis[J]. Chin J Nephrol202238(3):247-253.

[33]

高聪普,白寿军. 自噬与糖尿病肾病肾脏固有细胞的损伤[J]. 肾脏病与透析肾移植杂志201726(1):68-71.

[34]

Gao CPBai SJ. Autophgy in diabetic nephropathy intrinsic cell injury[J]. Chin J Nephrol Dial Transplant201726(1):68-71.

[35]

Zhu WLi YYZeng HXet al. Carnosine alleviates podocyte injury in diabetic nephropathy by targeting caspase-1-mediated pyroptosis[J]. Int Immunopharmacol2021101(Pt B):108236.

[36]

Wen SLi SLLi LLet al. circACTR2:a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis[J]. Biol Pharm Bull202043(3):558-564.

[37]

Wang WJWang XYChun Jet al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium[J]. J Immunol2013190(3):1239-1249.

[38]

Han JRZuo ZKShi XJet al. Hirudin ameliorates diabetic nephropathy by inhibiting Gsdmd-mediated pyroptosis[J]. Cell Biol Toxicol202339(3):573-589.

[39]

Wang XHLi QSui BZet al. Schisandrin A from Schisandra chinensis attenuates ferroptosis and NLRP3 inflammasome-mediated pyroptosis in diabetic nephropathy through mitochondrial damage by AdipoR1 ubiquitination[J]. Oxid Med Cell Longev20222022:5411462.

[40]

Zheng FFMa LQLi Xet al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease[J]. Diabetes202271(12):2739-2750.

[41]

Li XJiang XJiang Met al. GLP-1RAs inhibit the activation of the NLRP3 inflammasome signaling pathway to regulate mouse renal podocyte pyroptosis[J/OL]. Acta Diabetol2023[epub ahead of print].DOI:10.1007/s00592-023-02184-y .

[42]

Zhang ZWNi PTang MQet al. Dapagliflozin alleviates renal podocyte pyroptosis via regulation of the HO-1/NLRP3 axis[J]. Mol Med Rep202328(5):200.

[43]

Birnbaum YBajaj MYang HCet al. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes[J]. Cardiovasc Drugs Ther201832(2):135-145.

[44]

Birnbaum YBajaj MQian JQet al. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome[J]. BMJ Open Diabetes Res Care20164(1):e000227.

[45]

Han WBMa QLiu YLet al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling[J]. Phytomedicine201957:203-214.

[46]

Zhang QLLiu XCSullivan MAet al. Protective effect of yi Shen Pai du formula against diabetic kidney injury via inhibition of oxidative stress,inflammation,and epithelial-to-mesenchymal transition in db/db mice[J]. Oxid Med Cell Longev20212021:7958021.

[47]

Li NZhao TTCao YTet al. Tangshen formula attenuates diabetic kidney injury by imparting anti-pyroptotic effects via the TXNIP-NLRP3-GSDMD axis[J]. Front Pharmacol202011:623489.

[48]

Wang MZWang JCao DWet al. Fucoidan alleviates renal fibrosis in diabetic kidney disease via inhibition of NLRP3 inflammasome-mediated podocyte pyroptosis[J]. Front Pharmacol202213:790937.

[49]

Wu QGuan YBZhang KJet al. Tanshinone IIA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. J Ethnopharmacol2023316:116667.

[50]

Lin JWCheng ACheng Ket al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease[J]. Int J Mol Sci202021(19):7057.

[51]

Liu PZhang ZDLi Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease[J]. Front Immunol202112:603416.

基金资助

国家自然科学基金青年科学基金资助项目(82104847)

AI Summary AI Mindmap
PDF (910KB)

272

访问

0

被引

详细

导航
相关文章

AI思维导图

/