miRNA在脓毒症细胞焦亡中的研究进展

刘慧玲 ,  孙航

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (08) : 925 -930.

PDF (1291KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (08) : 925 -930. DOI: 10.13406/j.cnki.cyxb.003568
综述

miRNA在脓毒症细胞焦亡中的研究进展

作者信息 +

Research advances in the role of miRNA in pyroptosis during sepsis

Author information +
文章历史 +
PDF (1321K)

摘要

脓毒症是一种危及生命的器官功能障碍,由宿主对感染反应失调引起的,是重症监护室患者死亡的重要原因之一,近年来,大量研究表明脓毒症的发生发展与细胞焦亡密切相关。miRNA执行多种重要的细胞功能,包括调节细胞周期、凋亡和分化等。最近的研究表明,miRNA在调节细胞焦亡中发挥了重要功能,细胞焦亡是一种与炎症反应相关的程序性细胞死亡,在许多疾病中起着关键作用,miRNA通过直接或间接作用于焦亡相关信号通路的蛋白质参与脓毒症的调控。本文就miRNA在脓毒症细胞焦亡中的调控和功能进行总结,为脓毒症细胞焦亡的研究提供新的研究方向和思路。

Abstract

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is an important cause of death in the intensive care unit. In recent years,numerous studies have shown that pyroptosis is closely associated with the development and progression of sepsis,and miRNA perform a variety of important cellular functions,including regulation of cell cycle,apoptosis,and differentiation. Recent studies have shown that miRNA play an important role in regulating pyroptosis,a programmed cell death associated with inflammatory response that plays a key role in many diseases,and miRNA are involved in the regulation of sepsis by acting directly or indirectly on the proteins of pyroptosis-related signaling pathway. This article summarizes the regulatory effect and role of miRNA in pyroptosis during sepsis,so as to provide new research directions and ideas for the research on pyroptosis during sepsis.

Graphical abstract

关键词

脓毒症 / 细胞焦亡 / miRNA

Key words

sepsis / pyroptosis / miRNA

引用本文

引用格式 ▾
刘慧玲,孙航. miRNA在脓毒症细胞焦亡中的研究进展[J]. 重庆医科大学学报, 2024, 49(08): 925-930 DOI:10.13406/j.cnki.cyxb.003568

登录浏览全文

4963

注册一个新账户 忘记密码

脓毒症是由宿主对感染反应失调引起的危及生命的器官功能障碍,是感染、手术、严重烧伤、中毒和心肺复苏后的常见并发症,是多器官功能障碍综合征和感染性休克的重要原因[1]。任何人都可能被感染,几乎任何的感染,都有可能导致脓毒症[2]。脓毒症具有发病率高、疾病进展快和治愈困难的特点,由于其致病因素和宿主因素的变化逐渐成为全球公共卫生问题之一[3]
脓毒症机体炎症反应的失调最终会导致致命的重大炎症爆发,研究发现细胞焦亡在脓毒症的发生发展过程中起着重要作用[4-5]。在焦亡过程中,免疫细胞释放促炎细胞因子,募集其他免疫细胞对抗感染,增强宿主的防御反应,促进消灭入侵的病原体,而细胞焦亡的失衡则会引起强烈的炎症风暴导致器官功能障碍,同时免疫细胞衰竭[6]。miRNA是非编码小RNA分子,自发现以来,miRNA一直被认为是无数细胞和生物体功能的关键参与者,研究表明miRNA已成为脓毒症发病机制的关键参与者[7-8]。细胞焦亡的调控机制涉及多种分子机制和信号通路,最近的研究表明miRNA在调节细胞焦亡中发挥了重要功能,为治疗脓毒症提供了新的靶点。

1 细胞焦亡与脓毒症

1.1 细胞焦亡在脓毒症中的作用

细胞焦亡是继细胞凋亡和细胞坏死后发现依赖炎性半胱氨酸天冬氨酸特异性蛋白酶(cysteinyl aspartate specific proteinase,caspase-1和caspase-4/5/11)激活由gasdermin蛋白(gsdmd protein,GSDMD)介导的一种程序性细胞死亡形式。研究发现细胞焦亡是脓毒症细胞死亡的主要方式,在脓毒症的发生和发展中起着重要作用[9]。细胞焦亡在脓毒症中起着“双刃剑”的作用,脓毒症早期,焦亡可抑制宿主内病原体的复制并加速其清除,若感染得不到及时的控制,大量病原体侵入血液和细胞,逃避免疫系统的识别和清除,在此过程中,宿主细胞释放病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)和损伤相关分子模式(damage associated molecular patterns,DAMPs)诱导大量焦亡,从而增加白细胞介素-18(interleukin-18,IL-18)和白细胞介素-1β(interleukin-1β,IL-1β)水平以加重炎症反应,最终导致器官衰竭。

研究发现中药八宝丹可通过减少炎症因子的释放,改善器官损伤来提高脓毒症小鼠的存活率,进一步的实验证明,八宝丹通过抑制核转录因子-κB(nuclear factor-κB,NF-κB)通路和炎性小体NOD样受体热休克蛋白结构域3(NOD-like receptor pyrin domain containing 3,NLRP3)的合成抑制了细胞焦亡,表明抑制细胞焦亡可能有助于治疗脓毒症[10]。另一研究报道了无药茶多酚纳米颗粒(tea polyphenols nanoparticles,TPNs)通过阻断GSDMD-N的寡聚化从而抑制细胞焦亡,在脓毒症小鼠模型中表现出良好的治疗效果[11]。在关于脓毒症相关弥散性血管内凝血(disseminated intravascular coagulation,DIC)的研究发现,细菌内毒素激活的外源性凝血途径的组织因子受到caspase-11的刺激,而血小板内皮细胞黏附分子-1可通过抑制巨噬细胞焦亡来预防脓毒症相关DIC[12-13]。在盲肠结扎穿孔术(cecal ligation-peferation,CLP)诱导的脓毒症模型中,抑制高迁移率族蛋白B1(high mobility group protein 1,HMGB1)表达后肺组织中caspase-11依赖性焦亡减弱,从而改善了脓毒症相关肺损伤[14]。亦有研究发现,通过阻断GSDMD通道的形成也可抑制焦亡并减轻脓毒症相关肺损伤[15]

1.2 细胞焦亡在脓毒症中的发生机制

细胞焦亡分为经典炎症小体途径、非经典炎症小体途径、由caspase-3/8介导的焦亡途径和颗粒酶介导的焦亡途径。在脓毒症中细胞焦亡发生机制为经典途径和非经典途径。

1.2.1 经典焦亡途径

经典焦亡途径是由炎性小体介导,依赖于caspase-1活化的死亡方式。在经典途径中,最常见的炎性小体是NLRP3。NLRP3炎性小体由传感器蛋白NLRP3、含有募集结构域(caspase activation and recruitment domain,CARD)的凋亡相关斑点样蛋白(apoptosis-associated speck-like protein,ASC)和pro-caspase-1 3部分组成。NLRP3可被多种PAMPs和DAMPs激活,激活后的NLRP3与ASC结合并招募caspase-1前体形成NLRP3炎性小体,其中caspase-1前体被裂解成活性caspase-1。活化的caspase-1切割GSDMD,产生的N端结合到细胞质膜上形成孔洞结构[16]。并且活化的caspase-1可将pro-IL-18和pro-IL-1β裂解为成熟的IL-18和IL-1β,通过GSDMD-N孔洞结构释放到胞外,并募集更多的炎症因子,形成炎症级联效应[17]。激活NLRP3炎性小体需要2个步骤,第一步是在病原体的刺激下,NF-κB被激活,引起NLRP3、IL-1β和IL-18的转录增加;第二步则是NLRP3的激活与组装。目前关于NLRP3炎性小体激活的确切分子机制尚不清楚,已知的有钾(K+)外流、线粒体功能障碍、活性氧(reactive oxygen species,ROS)和线粒体DNA(mitochondrion DNA,mtDNA)的释放、溶酶体破坏、氯(Cl-)外流和钙(Ca2+)通量改变等[18-20]。研究报道硫氧环蛋白相互作用蛋白(thioredoxin-interacting protein,TXINP)、NIMA相关蛋白激酶7(NIMA-related kinase 7,NEK7)、膜联蛋白1(pannexin-1)和P2X嘌呤受体7(P2X7R)可激活NLRP3,而一类抗氧化基因sestrin 2可抑制NLRP3的激活[21-22]。NEK7是K+外排时下游的一种必需蛋白,介导NLRP3的组装和激活[23]。Pannexin-1和P2X7R与K+和ATP水平变化相关(图1)。

1.2.2 非经典焦亡途径

在非经典焦亡途径中,caspase-4/5/11可通过N端的CARD直接与细胞内的脂多糖(lipopolysaccharides,LPS)结合而被激活。活化的caspase-4/5/11可直接将GSDMD裂解为GSDMD-N,GSDMD-N寡聚化后转移到细胞膜上,最终形成质膜孔。与经典焦亡途径不同,caspase-4/5/11不能直接裂解pro-IL-1β和IL-18,而是通过激活NLRP3炎性小体通路间接诱导IL-1β和IL-18的成熟和释放,潜在机制可能与K+的外排有关,GSDMD-N形成的质膜孔导致K+外排,进而诱导NLRP3炎性小体组装,最终导致焦亡[24-26]。值得注意的是,pannexin-1是caspase-11诱导的非经典焦亡途径中诱导细胞焦亡的另一关键蛋白,在LPS的刺激下,活化的caspase-11可特异性剪切和修饰pannexin-1,引起胞内ATP的释放,从而诱导离子通道P2X7R介导的焦亡,与caspase-11结合的pannexin-1通道亦诱导K+的外排,进而激活NLRP3炎性小体[27]。LPS的致死率主要是由caspase-11依赖性焦亡所驱动,而不是依靠caspase-1诱导IL-18和IL-1β的释放,由于caspase-11可能是caspase-1的上游激活因子,因此可以合理地假设经典焦亡途径与非经典焦亡途径并非无关,可能是通过相互作用形成一个复杂的调控网络[24-28]图1)。

2 miRNA与脓毒症

2.1 <bold>m</bold>iRNA的生物合成及作用机制

miRNA是一种长度约为21~26个核苷酸的内源性非编码RNA分子,1993年,Lee RC等[29]在秀丽隐杆线虫中首次发现miRNA-lin-4。2001年,Lagos-Quintana M等[30]将这类RNA分子命名为miRNA。miRNA作为转录后抑制因子调节基因表达,通过与mRNA的3’-非编码区(3’-UTR)结合来降解或抑制蛋白质翻译以影响基因表达,此外,miRNA可以与基因启动子,5’-非翻译区(5’-UTR)和编码序列相互作用,并且可以在RNA激活的同时激活转录,最后,miRNA可以与蛋白质相互作用以改变其活性[31]。miRNA在各种组织和细胞中表达,miRNA作为生物调控因子,在细胞生长、增殖、分化、凋亡、代谢和稳态等生理过程中发挥重要作用[32- 33]。miRNA分子大量参与过度免疫反应、免疫抑制,在脓毒症发展的各个阶段均发挥调控作用。

2.2 <bold>m</bold>iRNA在脓毒症中的作用

研究报道,在脓毒症患者外周血miRNA筛查中发现大量差异表达的miRNA,且这些miRNA可加重或缓解脓毒症病情及相关器官损伤[34-35]。在当脓毒症宿主的免疫系统处于严重的促炎状态时,多种细胞因子表达上调,例如肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)、IL-18和IL-1β[36]。在脓毒症所致的肠屏障功能障碍模型中,抑制miR-155可有效降低TNF-α和IL-6的表达,进而缓解炎症和肠屏障损伤[37]。在脓毒性肺损伤小鼠模型中miR-27a的表达量上调,当敲低miR-27a后NF-κB的磷酸化受到抑制,炎症因子TNF-α和IL-6的表达水平下降,并且1项临床研究报道miR-27a可作为脓毒症诊断和预后的生物标志物[38-39]。在脓毒症小鼠模型中,众多研究发现miRNA可对炎症因子TNF-α、IL-6、IL-18和IL-1β进行负调控或正调控,当改变miRNA的表达量时,对脓毒症的发展进程起了一定的保护或者促进作用。已有研究报道miRNA可作为脓毒症的生物标志物,如miR-15a、miR-16、miR-122、miR-146a、miR-223和miR-499-5p可作为脓毒症诊断性生物指标物,miR-93b、miR-483-5p和miR-574-5p可作为预后标志物[40-41]。最新研究发现,miRNA还可通过调节细胞焦亡参与脓毒症的调控[42]

2.3 miRNA调控脓毒症细胞焦亡

miRNA可通过直接靶向细胞焦亡途径中的关键分子如NF-κB、NLRP3和GSDMD,或者靶向其上游信号分子调控细胞焦亡,从而参与脓毒症的调控(图1)。

2.3.1 miRNA作用于NF-κB参与细胞焦亡

NF-κB是炎症通路上重要的信号分子,在调节促炎基因的表达中发挥重要作用,随着焦亡研究的深入,发现NF-κB通路与细胞焦亡有着密切联系。Ling H等[43]和Chen S等[44]发现miR-579-3p和miR-34a直接靶向NF-κB上游负调控分子烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)依赖性去乙酰化酶(sirtuin 1,SIRT1),并负调控SIRT1的表达,研究发现在脓毒症模型中miR-579-3p和miR-34a表达上调,而SIRT1 mRNA表达下调,当敲低miR-579-3p和抑制miR-34a后,SIRT1表达上调,焦亡相关蛋白如炎性小体NLRP3、ASC、cleaved caspase-1和GSDMD-N的表达水平下降,说明miR-579-3p和miR-34a可通过负调控SIRT1作用于NF-κB改善脓毒症小鼠细胞焦亡。Jiao Y等[45]发现miR-30d-5p不仅直接靶向SIRT1还可以靶向NF-κB另一负调控因子细胞因子信号传导抑制蛋白1(suppressor of cytokine signaling-1,SOCS-1),在脓毒症肺损伤模型中miR-30d-5p表达上调后抑制SOCS-1和SIRT1激活NF-κB,NLRP3 mRNA表达增加,焦亡相关蛋白caspase-1和GSDMD-N上调,促进细胞焦亡进而加重肺损伤。Xue ZY等[46]发现miR-21直接靶向去泛素化酶锌指蛋白A20,A20是NF-κB的负调控分子,在LPS与ATP诱导miR-21敲低的小鼠骨髓来源的巨噬细胞(bone marrow-derived macrophages,BMDM)体外实验中,NF-κB表达下降并抑制焦亡,NLRP3、ASC、cleaved caspase-1和GSDMD-N的表达水平下降,当抑制miR-21后,上述现象在LPS与ATP诱导的THP-1细胞中也同样存在。有研究报道miR-155-5p可直接靶向Toll样受体4(toll-like receptor 4,TLR4)上游负调控分子肌醇磷酸酶1(SH2-containing inositol phosphatase 1,SHIP1)并对其负调控,而TLR4是NF-κB激活分子,在LPS诱导的THP-1细胞脓毒症模型中miR-155-5p过表达后,TLR4、NLRP3、ASC、cleaved caspase-1和GSDMD的表达水平升高,说明miR-155-5p对脓毒症巨噬细胞焦亡具有正调控作用[47]

2.3.2 miRNA作用于炎症小体参与细胞焦亡

研究发现在脓毒症肾损伤中miR-20a-5p、miR-30c-5p、miR-93-5p和miR-223-3p表达水平明显下调,双荧光素报告基因结果发现miR-20a-5p和miR-223-3p直接靶向NLRP3并对其负调控,而miR-30c-5p、miR-93-5p直接靶向NLRP3的上游激动因子TXNIP并对其负调控,在LPS诱导HK-2人肾小管上皮细胞的体外脓毒症模型中,抑制miR-20a-5p、miR-30c-5p、miR-93-5p和miR-223-3p后可加重细胞焦亡,焦亡相关蛋白NLRP3、ASC、cleaved caspase-1的表达水平升高[48-51]。另一研究发现miR-181a-5p直接靶向NEK7并对其负调控,NEK7是形成NLRP3-NEK7炎症小体复合物的关键分子,过表达miR-181a-5p可抑制焦亡相关蛋白NEK7、NLRP3、GSDMD-N、cleaved caspase-1的表达水平[52]。在LPS诱导RAW264.7巨噬细胞的体外脓毒症模型中,miR-122-3p直接靶向NLRP3并对其负调控,过表达miR-122-3p有效地恢复了细胞活力,并减弱了caspase-1、pro-caspase-1、NLRP3、ASC和GSDMD的表达[53]

在关于脓毒症心肌损伤的研究中发现,miR-96-5p、miR-150-5p和miR-590-3p的表达量明显下调,研究证实miR-96-5p直接靶向NLRP3并对其负调控,miR-150-5p则是通过直接靶向TXINP上游分子c-FOS进而调控细胞焦亡,miR-590-3p则是通过AMPK/mTOR参与脓毒症心肌细胞焦亡调控,当抑制miR-96-5p和miR-590-3p之后,NLRP3、cleaved caspase-1和GSDMD-N的表达水平上升,抑制miR-150-5p之后焦亡相关蛋白NLRP3、ASC和cleaved caspase-1表达上升,说明miR-96-5p、miR-150-5p和miR-590-3p可通过作用于NLRP3参与脓毒症心肌细胞焦亡的调控[54-56]。而另一项关于脓毒症心肌损伤的研究中发现miR-138-5p表达量明显上调,并通过直接靶向负调控SESN2,并抑制了心肌细胞焦亡的发生,对脓毒症起保护作用[57]。在关于脓毒症肺损伤的研究中发现miR-138-5p通过直接靶向NLRP3参与调控细胞焦亡,对细胞焦亡具有负调控作用[58]。而另一项关于脓毒症肺损伤的研究发现miR-26a-5p可通过靶向负调控Rho激酶1(Rho kinase 1,ROCK1),过表达miR-26a-5p可降低NLRP3、ASC、cleaved caspase-1和GSDMD的蛋白水平,从而减轻细胞焦亡[59]。在关于脓毒症肠道屏障损伤的研究中发现miR-874-5p通过下调维生素D受体(Vitamin D receptor,VDR)的表达,进而促进NLRP3和caspase-1的活化,诱导细胞焦亡的发生,从而导致肠黏膜屏障的损伤[60]

2.3.3 <bold>m</bold>iRNA作用于GSDMD参与细胞焦亡

GSDMD是细胞焦亡的关键蛋白,研究发现在CLP诱导的脓毒症模型中miR-31-5p和miR-135b-5p表达量明显下调,并且miR-31-5p直接靶向GSDMD并对其负调控,在体外脓毒症模型中,过表达miR-31-5p和miR-135b-5p后,焦亡相关蛋白GSDMD、caspase-1和NLRP3的表达水平下降,说明miR-31-5p和miR-135b-5p能够通过抑制GSDMD缓解细胞焦亡[61-62]。另1项研究发现miR-193a-5p也可直接靶向GSDMD并对其负调控,抑制miR-193a-5p后加重了细胞焦亡,即焦亡相关蛋白GSDMD、caspase-1、caspase-11表达水平明显升高[63]

3 结论与展望

细胞焦亡在脓毒症的发生发展过程中起着重要的作用,抑制细胞焦亡的发生可延缓脓毒症的进程,上述研究表明miRNA可通过靶向细胞焦亡途径关键分子NF-κB及上游信号分子、NLRP3及上游信号分子和GSDMD参与脓毒症的调控,对脓毒症相关器官损伤具有保护或加重作用,为研究脓毒症的发生机制提供新方向,并为脓毒症的治疗提供新靶点。自细胞焦亡发现以来,对其的认识日益全面和深刻。近年来许多研究表明焦亡参与多种疾病,包括脓毒症,并且在脓毒症中起着重要作用,在某些情况下,焦亡的宿主细胞会释放细胞内容物,从而提供启动炎症级联反应的强大信号。然而细胞焦亡在脓毒症中的具体分子机制仍不清楚,未来的研究应重点研究在不同刺激下的各种细胞中,经典或非经典焦亡途径是否占主导地位。随着miRNA研究的深入,发现miRNA在脓毒症患者外周血中表达上调或下调。值得注意的是,越来越多的证据表明miRNA在细胞焦亡起着关键作用,这为研究脓毒症中细胞焦亡机制开辟了一条新的途径,然而miRNA对脓毒症细胞焦亡的影响是复杂的,特别是在不同的细胞中,如何准确干预miRNA介导的焦亡,仍需要更多的实验研究。

参考文献

[1]

Singer MDeutschman CSSeymour CWet al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA2016315(8):801-810.

[2]

Coronado Munoz ANawaratne UMcMann Det al. Late-onset neonatal sepsis in a patient with covid-19[J]. N Engl J Med2020382(19):e49.

[3]

Fleischmann CScherag AAdhikari NKJet al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations[J]. Am J Respir Crit Care Med2016193(3):259-272.

[4]

Song RYHe SJWu YBet al. Pyroptosis in sepsis induced organ dysfunction[J]. Curr Res Transl Med202372(2):103419.

[5]

Miao EALeaf IATreuting PMet al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria[J]. Nat Immunol201011(12):1136-1142.

[6]

Zheng XTChen WWGong FCet al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis:a review[J]. Front Immunol202112:711939.

[7]

Ivey KNSrivastava D. microRNAs as developmental regulators[J]. Cold Spring Harb Perspect Biol20157(7):a008144.

[8]

Zhang YLKim MSJia BSet al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs[J]. Nature2017548(7665):52-57.

[9]

Shi JJZhao YWang YPet al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature2014514(7521):187-192.

[10]

Li YFSheng HDQian Jet al. The Chinese medicine babaodan suppresses LPS-induced sepsis by inhibiting NLRP3-mediated inflammasome activation[J]. J Ethnopharmacol2022292:115205.

[11]

Chen YLuo RHLi Jet al. Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis[J]. ACS Nano202216(2):2429-2441.

[12]

Yang XYCheng XYTang YTet al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure[J]. Immunity201951(6):983-996.

[13]

Luo LLXu MLiao DYet al. PECAM-1 protects against DIC by dampening inflammatory responses via inhibiting macrophage pyroptosis and restoring vascular barrier integrity[J]. Transl Res2020222:1-16.

[14]

Deng MHTang YTLi WBet al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity201849(4):740-753.

[15]

Liu XBWang DZhang XNet al. Effect and mechanism of phospholipid scramblase 4(PLSCR4) on lipopolysaccharide(LPS)-induced injury to human pulmonary microvascular endothelial cells[J]. Ann Transl Med20219(2):159.

[16]

Miao EARajan JVAderem A. Caspase-1-induced pyroptotic cell death[J]. Immunol Rev2011243(1):206-214.

[17]

Shi JJGao WQShao F. Pyroptosis:gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci201742(4):245-254.

[18]

Lima H JrJacobson LSGoldberg MFet al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death[J]. Cell Cycle201312(12):1868-1878.

[19]

Gong TYang YQJin TCet al. Orchestration of NLRP3 inflammasome activation by ion fluxes[J]. Trends Immunol201839(5):393-406.

[20]

Swanson KVDeng MTing JPY. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol201919(8):477-489.

[21]

Zhou RBTardivel AThorens Bet al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol201011(2):136-140.

[22]

Wen RLiu YPTong XXet al. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction[J]. Front Cell Infect Microbiol202212:962139.

[23]

Sharif HWang LWang WLet al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature2019570(7761):338-343.

[24]

Kayagaki NWarming SLamkanfi Met al. Non-canonical inflammasome activation targets caspase-11[J]. Nature2011479(7371):117-121.

[25]

Kayagaki NStowe IBLee BLet al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature2015526(7575):666-671.

[26]

Cohen HBaram NEdry-Botzer Let al. Vibrio pore-forming leukocidin activates pyroptotic cell death via the NLRP3 inflammasome[J]. Emerg Microbes Infect20209(1):278-290.

[27]

Yang DHHe YMuñoz-Planillo Ret al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity201543(5):923-932.

[28]

Wang SMiura MJung YKet al. Murine caspase-11,an ICE-interacting protease,is essential for the activation of ICE[J]. Cell199892(4):501-509.

[29]

Lee RCFeinbaum RLAmbros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell199375(5):843-854.

[30]

Lagos-Quintana MRauhut RLendeckel Wet al. Identification of novel genes coding for small expressed RNAs[J]. Science2001294(5543):853-858.

[31]

Ramchandran RChaluvally-Raghavan P. miRNA-mediated RNA activation in mammalian cells[J]. Adv Exp Med Biol2017983:81-89.

[32]

Wang JChen JYSen S. MicroRNA as biomarkers and diagnostics[J]. J Cell Physiol2016231(1):25-30.

[33]

Huang ZTMou TLuo YHet al. Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB[J]. Cell Death Dis202011(6):455.

[34]

Ho JChan HWong SHet al. The involvement of regulatory non-coding RNAs in sepsis:a systematic review[J]. Crit Care201620(1):383.

[35]

Ghafouri-Fard SKhoshbakht THussen BMet al. Regulatory role of non-coding RNAs on immune responses during sepsis[J]. Front Immunol202112:798713.

[36]

Li KLHuang ZTTian SJet al. MicroRNA-877-5p alleviates ARDS via enhancing PI3K/Akt path by targeting CDKN1B both in vivo and in vitro [J]. Int Immunopharmacol202195:107530.

[37]

Cao YYWang ZWang ZHet al. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling[J]. Int Immunopharmacol202190:107218.

[38]

Wang ZCRuan ZSMao YFet al. miR-27a is up regulated and promotes inflammatory response in sepsis[J]. Cell Immunol2014290(2):190-195.

[39]

Ou YWAn RCWang HCet al. Oxidative stress-related circulating miRNA-27a is a potential biomarker for diagnosis and prognosis in patients with sepsis[J]. BMC Immunol202223(1):14.

[40]

Essandoh KFan GC. Role of extracellular and intracellular microRNAs in sepsis[J]. Biochim Biophys Acta20141842(11):2155-2162.

[41]

Wang HJZhang PJChen WJet al. Four serum microRNAs identified as diagnostic biomarkers of sepsis[J]. J Trauma Acute Care Surg201273(4):850-854.

[42]

Li JHMa JMLi MYet al. GYY4137 alleviates sepsis-induced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway[J]. Life Sci2021271:119192.

[43]

Ling HLi QDuan ZPet al. LncRNA GAS5 inhibits miR-579-3p to activate SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell pyroptosis in sepsis-associated renal injury[J]. Am J Physiol Cell Physiol2021321(1):117-133.

[44]

Chen SDing RYHu ZWet al. MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice[J]. Front Immunol202011:1829.

[45]

Jiao YZhang TZhang CMet al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care202125(1):356.

[46]

Xue ZYXi QLiu HKet al. miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock[J]. Cell Death Dis201910(6):461.

[47]

Yang DYZhao DYJi JLet al. CircRNA_0075723 protects against pneumonia-induced sepsis through inhibiting macrophage pyroptosis by sponging miR-155-5p and regulating SHIP1 expression[J]. Front Immunol202314:1095457.

[48]

Deng LTWang QLYu Cet al. lncRNA PVT1 modulates NLRP3-mediated pyroptosis in septic acute kidney injury by targeting miR-20a-5p[J]. Mol Med Rep202123(4):271.

[49]

Li XYao LYZeng XMet al. miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP[J]. Inflammation202144(1):217-228.

[50]

Juan CXMao YCao Qet al. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury[J]. J Cell Mol Med202125(10):4786-4799.

[51]

Tan JXFan JHe Jet al. Knockdown of LncRNA DLX6-AS1 inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway in lipopolysaccharide-induced acute kidney injury[J]. J Bioenerg Biomembr202052(5):367-376.

[52]

Zhang MZhi DYLin Jet al. miR-181a-5p inhibits pyroptosis in sepsis-induced acute kidney injury through downregulation of NEK7[J]. J Immunol Res20222022:1825490.

[53]

Li MHu LHKe Qet al. miR-122-3p alleviates LPS-induced pyroptosis of macrophages via targeting NLRP1[J]. Ann Clin Lab Sci202353(4):578-586.

[54]

Gong XRLi YHe Yet al. USP7-SOX9-miR-96-5p-NLRP3 network regulates myocardial injury and cardiomyocyte pyroptosis in sepsis[J]. Hum Gene Ther202233(19/20):1073-1090.

[55]

Wang XLi XLQin LJ. The lncRNA XIST/miR-150-5p/c-Fos axis regulates sepsis-induced myocardial injury via TXNIP-modulated pyroptosis[J]. Lab Invest2021101(9):1118-1129.

[56]

Liu JJLi YYang MSet al. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis[J]. Arch Biochem Biophys2020695:108611.

[57]

An LYang TYZhong Yet al. Molecular pathways in sepsis-induced cardiomyocyte pyroptosis:novel finding on long non-coding RNA ZFAS1/miR-138-5p/SESN2 axis[J]. Immunol Lett2021238:47-56.

[58]

Liu FYang YPeng Wet al. Mitophagy-promoting miR-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury[J]. Inflamm Res202372(2):329-346.

[59]

Fan XYMa ZXTang LBet al. lncRNA NEAT1 mediates LPS-induced pyroptosis of BEAS-2B cells via targeting miR-26a-5p/ROCK1 axis[J]. Kaohsiung J Med Sci202339(7):665-674.

[60]

Shang LRLi JXZhou FYet al. MiR-874-5p targets VDR/NLRP3 to reduce intestinal pyroptosis and improve intestinal barrier damage in sepsis[J]. Int Immunopharmacol2023121:110424.

[61]

Kang KLi NNGao Yet al. Circ-Katnal1 enhances inflammatory pyroptosis in sepsis-induced liver injury through the miR-31-5p/GSDMD axis[J]. Mediators Inflamm20222022:8950130.

[62]

臧宾宾,李 华,杨颖,. miR-135b-5p抑制脓毒症引起的小鼠急性肺损伤(ALI)的作用及机制[J]. 中国应用生理学杂志202238(4):366-372.

[63]

Zang BBLi HYang Yet al. The role of miR-135b-5p in inhibiting mice acute lung injury (ALI) induced by sepsis and its mechanism[J]. Chin J Appl Physiol202238(4):366-372.

[64]

Wang JLLi XLiu YFet al. CircHIPK3 promotes pyroptosis in acinar cells through regulation of the miR-193a-5p/GSDMD axis[J]. Front Med20207:88.

基金资助

国家自然科学基金面上资助项目(81871608)

AI Summary AI Mindmap
PDF (1291KB)

231

访问

0

被引

详细

导航
相关文章

AI思维导图

/