早期脓毒症对延髓内脏带的病理损害及胆碱能抗炎通路的干预效应

李楚娟 ,  李红兵 ,  史兰 ,  柳仙 ,  王颖 ,  郑权

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (09) : 1095 -1104.

PDF (6655KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (09) : 1095 -1104. DOI: 10.13406/j.cnki.cyxb.003575
基础研究

早期脓毒症对延髓内脏带的病理损害及胆碱能抗炎通路的干预效应

作者信息 +

Pathological damage of medullary visceral zone induced by early sepsis and intervention effect of the cholinergic anti-inflammatory pathway

Author information +
文章历史 +
PDF (6814K)

摘要

目的 探索脓毒症对延髓内脏带(medullary visceral zone,MVZ)的影响及胆碱能抗炎通路(cholinergic anti-inflammatory pathway,CAP)的干预效应。 方法 64只成年SPF级雄性Sprague-Dawley大鼠纳入本研究,随机分为对照组8只:正常饲养;假手术组8只:大鼠剖腹,游离盲肠后缝合腹腔,并予哌拉西林(50 mg/kg,腹腔注射,1次/d,连续3 d)预防感染及生理盐水(1 mL/100 g,腹腔注射,1次/d,连续3 d);脓毒症组共48只,采用盲肠结扎穿刺(cecal ligation and puncture,CLP)制备脓毒症模型后随机分为:模型组16只:CLP后,余处理同假手术组;GTS-21[α7-烟碱样乙酰胆碱受体(nicotinic acetylcholine receptors,nAChRs)激动剂,用于激活CAP]组16只,哌拉西林使用同脓毒症组,并以GTS-21(4 mg/kg,腹腔注射,1次/d,连续3 d)进行干预;甲基牛扁亭(methyllycaconitine,MLA)强效选择性α7nAChRs拮抗剂,用于阻断CAP组16只:哌拉西林使用同脓毒症组。干预3 d后,收集每组大鼠延髓样本,用于延髓内脏带的病理观察、TdT介导的dUTP缺口末端标记(TdT mediated dUTP Nick End Labeling,TUNEL)检测凋亡、酪氨酸羟化酶(tyrosine hydroxylase,TH)/Caspase 3或胆碱乙酰转移酶(choline acetyltransferase,CHAT)/Caspase 3的双重免疫荧光标记检测两种神经元的凋亡情况,PCR检测关键基因如生长相关蛋白43(grouth associated protein-43,GAP-43)mRNA,少突胶质细胞转录因子2(oligodendrocyte transcription factor 2,Olig-2) mRNA,血管内皮生长因子(vascular endothelial growth factor,VEGF) mRNA,胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP) mRNA,和基质金属蛋白酶(matrix metalloprotein,MMP)-9 mRNA的表达。 结果 模型组MVZ凋亡指数明显高于对照组(P<0.05),GTS-21具有降低脓毒病导致的凋亡的趋势(P>0.05),MLA较GTS-21明显增加凋亡(P<0.05);脓毒症诱导MVZ儿茶酚能神经元和胆碱能神经元较对照组Caspase 3表达明显升高P<0.05),TH明显降低(P<0.05),但CHAT仅有下降的趋势(P>0.05);GTS-21具有降低脓毒症儿茶酚胺能和胆碱能神经元Caspase 3表达的趋势(P>0.05),并上调脓毒症TH与CHAT表达的趋势(P>0.05);MLA则促进脓毒症导致的儿茶酚胺能和胆碱能神经元Caspase 3表达(P>0.05),明显降低TH与CHAT表达(P<0.05)。此外,与对照组相比,脓毒症明显上调了关键基因GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(P<0.05),下调了Olig-2 mRNA的表达(P<0.05)。GTS-21的干预明显下调了脓毒症GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(P<0.05),具有上调Olig-2 mRNA的表达趋势(P>0.05);反之,与GTS-21相比,MLA则明显上调了GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(P<0.05),明显下调了Olig-2 mRNA的表达(P<0.05)。 结论 激活CAP可以有效地恢复早期脓毒症引起MVZ的病理变化和功能抑制,可能是激活CAP发挥对系统性炎症和神经炎症的抑制的另外一个重要机制,该研究揭示了MVZ和CAP可能是遏制早期脓毒症炎症风暴的潜在关键靶点。

Abstract

Objective To investigate the influence of sepsis on medullary visceral zone(MVZ) and the intervention effect of the cholinergic anti-inflammatory pathway(CAP). Methods A total of 64 specific pathogen-free adult male Sprague-Dawley rats were randomly divided into control group with 8 rats(normal feeding);sham-operation group with 8 rats undergoing laparotomy and suture of the abdominal cavity after isolation of the cecum,followed by piperacillin(50 mg/kg,intraperitoneal injection,once a day for 3 consecutive days) to prevent infection and normal saline(1 mL/100 g,intraperitoneal injection,once a day for 3 consecutive days);sepsis group with 48 rats undergoing cecal ligation and puncture(CLP) to establish a models of sepsis,then they were randomly divided into model group(given the same treatment as the sham-operation group),GTS-21(a selective α7 nicotinic acetylcholine receptor agonist used to activate the cholinergic anti-inflammatory pathway[CAP]) group with 16 rats treated with piperacillin(the same treatment as the sepsis group) and intervened with GTS-21(4 mg/kg,intraperitoneal injection,once a day for 3 consecutive days),and the methyllycaconitine(MLA,a potent and selective nicotine acetylcholine receptor antagonist used to block CAP) group with 16 rats given the same piperacillin treatment as the sepsis group and intervened with MLA(4.8 mg/kg,intraperitoneal injection,once a day for 3 consecutive days). After 3 days of intervention,medulla oblongata samples were collected from each group for pathological observation;TdT-mediated dUTP nick end labeling(TUNEL) was used to measure apoptosis;double immunofluorescence labeling for tyrosine hydroxylase(TH)/Caspase 3 or choline acetyltransferase(CHAT)/Caspase 3 was used to observe the apoptosis of neurons;PCR was used to measure the mRNA expression levels of the key genes such as growth-associated protein-43(GAP-43),oligodendrocyte transcription factor 2(Olig-2),vascular endothelial growth factor(VEGF),glial fibrillary acidic protein(GFAP),and matrix metalloprotein-9(MMP-9). Results The model group had a significantly higher apoptosis index of MVZ than the control group(P<0.05),and GTS-21 tended to reduce apoptosis induced by sepsis(P>0.05),while MLA significantly increased apoptosis compared with GTS-21(P<0.05). Compared with the control group,sepsis induced a significant increase in the expression of Caspase 3 in MVZ catecholaminergic and cholinergic neurons(P<0.05),as well as a significant reduction in the expression of TH(P<0.05),while there was only a tendency of reduction in the expression of CHAT(P>0.05);GTS-21 tended to reduce the expression of Caspase 3 in catecholaminergic and cholinergic neurons in sepsis(P>0.05) and upregulate the expression of TH and CHAT in sepsis(P>0.05);MLA promoted the expression of Caspase 3 in catecholaminergic and cholinergic neurons caused by sepsis(P>0.05) and significantly reduced the expression of TH and CHAT(P<0.05). In addition,compared with the control group,sepsis significantly upregulated the mRNA expression levels of the key genes such as GAP-43,GFAP,VEGF,and MMP-9(P<0.05) and significantly downregulated the mRNA expression level of Olig-2(P<0.05). GTS-21 significantly downregulated the mRNA expression levels of GAP-43,GFAP,VEGF,and MMP-9 in sepsis(P<0.05) and tended to upregulate the mRNA expression level of Olig-2(P>0.05);on the contrary,compared with GTS-21,MLA significantly upregulated the mRNA expression levels of GAP-43,GFAP,VEGF,and MMP-9(P<0.05) and significantly downregulated the mRNA expression level of Olig-2(P<0.05). Conclusion Activating CAP can effectively restore the pathological changes and functional inhibition of MVZ caused by early sepsis,which may be another important mechanism to inhibit systemic inflammation and neuroinflammation by activating CAP,and this study shows that MVZ and CAP may be potential key targets for curbing inflammatory storm in early sepsis.

Graphical abstract

关键词

脓毒症 / 延髓内脏带 / 胆碱能抗炎通路 / 神经炎症

Key words

sepsis / medullary visceral zone / cholinergic anti-inflammatory pathway / neuroinflammation

引用本文

引用格式 ▾
李楚娟,李红兵,史兰,柳仙,王颖,郑权. 早期脓毒症对延髓内脏带的病理损害及胆碱能抗炎通路的干预效应[J]. 重庆医科大学学报, 2024, 49(09): 1095-1104 DOI:10.13406/j.cnki.cyxb.003575

登录浏览全文

4963

注册一个新账户 忘记密码

早期感染引起的失控的系统炎症风暴与高死亡率密切相关[1],抗炎治疗可以显著改善脓毒症患者的死亡率和预后[2],表明控制脓毒症系统性炎症对改善患者预后的重要性。虽然神经-免疫交互作用在调控系统性炎症方面取得重要进展[3],但炎症调控的神经中枢在脓毒症中的病理改变及其干预效应尚未明了。延髓内脏带(medullary visceral zone,MVZ)是迷走神经调控系统性炎症的初级中枢,同时将外周炎症信息传输到高级神经中枢并接受高级中枢的调控[4],其在系统性炎症的调控中具有关键的作用。先前的研究证实:MVZ通过胆碱能抗炎途径(cholinergic anti-inflammatory pathway,CAP)有效地调节系统炎症和免疫,选择性α7烟碱乙酰胆碱受体激动剂3-(2,4-二甲氧基苯基)丙烯碱(GTS-21)明显降低炎症介质的血清水平[5],例如可溶性CD14(Presepsin)、高迁移率族蛋白-1(high mobility group box-1,HMGB-1)、白细胞介素(interleukin,IL)-10、肿瘤坏死因子(tumor necrosis factor,TNF)-α、TH17淋巴细胞百分比;相反,一种强有力的选择性尼古丁乙酰胆碱受体拮抗剂甲基牛扁亭(methyllycaconitine,MLA)会恶化脓毒症的系统炎症和免疫功能[6-7]。已知GTS-21和MLA都可以穿过血脑屏障[8-9],同时,CAP具有广泛的中枢调节作用,如认知功能和系统性炎症[10-11],因此,GTS-21和MLA除了在外周激活或拮抗CAP影响系统性炎症外,是否会进入中枢,直接影响CAP的调节中枢(MVZ)的神经炎症并影响其结构与功能,从而进一步影响其对系统性炎症的调控尚不得而知。
研究表明[12-13]:系统炎症会诱导MVZ的神经炎症,导致自主的调控紊乱。临床上,重症监护室确诊为脓毒症脑病的患者与无脑病的患者相比,死亡率显著提高[14]。由此推测,MVZ在脓毒症早期阶段受到全身性炎症的攻击,这可能是脓毒症诱导CAP调节功能紊乱和早期炎性风暴的重要机制。因此在前期研究的基础上,本研究拟探索脓毒症诱导的MVZ的病理改变,关键神经元的凋亡及其功能状态,MVZ神经炎症,损伤及修复相关的基因表达,以明确前期验证的脓毒症诱导CAP功能低下的原因,同时,以CAP激活与拮抗进行干预以探索其对MVZ病理的干预效应,从而探明脓毒症诱导的MVZ的病理改变并证实中枢CAP的干预可能成为脓毒症系统性炎症与免疫紊乱的重要手段。

1 材料与方法

1.1 实验动物

SPF级SD大鼠(周龄:6周)64只,许可证号:SYXK(鄂)2018-0104;购自三峡大学实验动物中心[出售许可证号:SCXK(鄂)2017-0012],动物饲养于贵州医科大学动物房。光照/黑暗时间为12/12 h。温度控制在(22±2) ℃。湿度保持在(60±10)%。进食及饮水自由。大鼠适应性喂养7 d之后开始实验。所有操作均严格按照实验动物关爱和使用协定指南执行(IACUC),并得到贵阳市第一人民医院医学伦理委员会批准,批号:2019007。

1.2 主要试剂

GTS-21,货号:29834(dihydrochloride MCE);MLA,货号:HY-N2332A/CS-0021211(MCE);荧光(FITC)标记羊抗兔IgG,武汉博士德生物,货号:BA1105;荧光(Cy3)标记羊抗小鼠IgG:武汉博士德生物,货号:BA1031;Anti-caspase 3,武汉三鹰生物,货号:66470-2-IG;Anti-Tyrosine Hydroxylase,武汉博士德生物,货号:BM4568;Anti-Choline acetyltransferase:武汉博士德生物,货号:bs-2423R;细胞凋亡检测试剂盒,上海翊圣生物,货号:40308ES20;DAPI,碧云天,货号:C1002;Trizol,Aidlab,货号:252250AX;dNTP,TIANGEN,货号:#P4325;Taq Plus DNA Polymerase,TIANGEN,货号:ET105-01。

1.3 主要仪器

病理切片机:德国Leica RM 2016轮转式切片机;切片刀:日本羽毛R35一次性刀片;组织摊烤片机:武汉俊杰JK-6生物组织摊烤片机;显微镜:奥林巴斯BX53生物显微镜;实时荧光定量PCR仪:ABI-QuantStudio 6。

1.4 研究方法

1.4.1 动物及分组、处理方法

大鼠适应性喂养7 d后按照随机数字表分为3组并进行相应的干预。对照组8只:正常饲养,不做任何处理;假手术组8只:大鼠剖腹暴露盲肠但不进行穿刺结扎,并予哌拉西林(50 mg/kg,腹腔注射,每天3次,连续3 d);脓毒症组共48只,采用经典的盲肠结扎穿刺法(cecal ligation and puncture,CLP)脓毒症模型制备[15],制备成功后随机再分为3组,每组16只。模型组:予哌拉西林(50 mg/kg,腹腔注射,3次/d,连续3 d)及生理盐水(1 mL/100 g,腹腔注射,3次/d,连续3 d);GTS-21组,哌拉西林使用同脓毒症组,并以GTS-21(4 mg/kg[16],腹腔注射,1次/d,连续3 d)进行干预;MLA组:哌拉西林使用同脓毒症组,并以MLA(4.8 mg/kg[17-18],腹腔注射,1次/d,连续3 d)进行干预。3 d后处死大鼠取延髓组织分析。采用MSS(Murine Sepsis Score)评分系统对造模进行评价[19],根据大鼠外观、意识水平、行为表现、对刺激的反应、睁眼反应、呼吸频率、呼吸质量等进行综合积分,一般积分超过4分可认为脓毒症造模成功,分值越高,表明脓毒症越严重[20]。采用3名实验人员进行单独评分,取平均值来评价各组大鼠造模后的病情严重程度,见图1

1.4.2 病理学观察

采用灌注取脑的方式,制备大鼠延髓中尾段的石蜡包埋切片,选取延髓组织(最后区平面到闩平面)石蜡切片脱蜡、苏木素伊红(hematoxylin and eosin,HE)染色、用100倍及400倍光学显微镜重点观察孤束核、迷走运动背核与腹外侧核组织病理特点,并使用Image J软件进行手工计数各组切片神经元及神经胶质细胞数量以进行定量分析。

1.4.3 TdT mediated dUTP Nick End Labeling(TUNEL)与细胞凋亡检测

选取延髓的石蜡包块,常规切片脱蜡,PBS润洗切片,加入2 mg/mL的Proteinase K溶液孵育,在延髓组织上加入TdT孵育缓冲液37 ℃孵育60 min,滴加DAPI复染细胞核,荧光显微镜下观察采集图像。荧光显微镜下组织切片上凋亡的细胞呈红色荧光,细胞核呈蓝色荧光。

运用常规的标记指数(LI)表示,选取3个高倍视野(400倍),每个高倍视野计数视野标记指数=各视野阳性细胞数/视野所有细胞,每个病例的凋亡指数(AI)等于各视野标记指数的平均值

1.4.4 免疫荧光双标

选取延髓中尾段的石蜡包埋切片,分别用于标记Caspase 3及胆碱乙酰转移酶(choline acetyltransferase,CHAT)或酪氨酸羟化酶(tyrosine hydroxylase,TH)的一抗混合物中孵育24 h、然后将切片与荧光标记的二抗(Cy3,FITC标记的山羊抗兔IgG)4 h、最后将切片用带有DAPI媒介对切片中所有细胞进行核染色,使用奥林巴斯BX53生物显微镜拍摄,用image pro(ipp6.0)软件分析每组3幅图像,计算平均光密度。

1.4.5 RT-PCR

取大鼠延髓组织50 mg,Trizol法提取RNA,RT逆转录成cDNA,加入所设计的引物(表1),实时荧光定量反应(SYBR Green染料法),绘制扩增曲线及熔解曲线,以β-actin作内参,采用QPCR算法(相对定量,2-ΔΔCt法)计算生长相关蛋白43(grouth associated protein-43,GAP-43)mRNA,少突胶质细胞转录因子2(oligodendrocyte transcription factor 2,Olig-2)mRNA,血管内皮生长因子(vascular endothelial growth factor,VEGF)mRNA,胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)mRNA,和基质金属蛋白(matrix metalloprotein,MMP)-9 mRNA的表达。

1.5 统计学方法

实验数据用SPSS 19.0软件包进行统计处理,计量资料以均数±标准差(x±s)表示,多组样本比较采用单因素方差分析,先进行Leven方差齐性检验,方差齐的2组资料之间的比较采用Bonferroni结果判定;方差不齐的2组资料的比较以Tamhane结果判定;计数资料以构成比表示。采用χ2检验。检验水准α=0.05。

2 结果

术后第3天,脓毒症模型组共死亡9只,死亡率为:56.3%;GTS-21组死亡8只,死亡率为:50%;MLA组死亡11只,死亡率为:68.8%;对照组与假手术组无死亡。5组死亡率有明显差异(χ2=14.210,P=0.003),但脓毒症模型组、GTS-21组及MLA组死亡率差异无统计学意义(χ2=1.210,P=0.107)。

按照MSS评分规则,脓毒症模型组均造模成功(MSS评分均大于15分),因此所有模型均造模成功。脓毒症模型组,GTS-21组及MLA组评分明显高于对照组(P=0.000),且MLA组评分明显高于GTS-21组(P=0.000)[21]

2.1 脑组织大体标本观察

5组大鼠延髓外观没有明显的差异,腹侧面模型组和MLA组大鼠前正中线稍浅,提示该2组大鼠延髓组织水肿明显,见图2

2.2 病理学观察

对照组和假手术组延髓组织结构清晰,层次分明,孤束核(nucleus tractus solitary,NTS),背侧迷走运动核(dorsal vagus motor nucleus,DVMN),腹内测网状核(ventrolateral reticular nucleus,VLRN)细胞排列整齐,高倍镜下神经元数量较多,胶质细胞较少;脓毒症3组可组织水肿明显,见神经元减少及胶质增生;MLA组神经元较对照组和假手术组明显减少(123.44±20.20及112.78±15.59 vs. 80.44±22.44,P=0.001,P=0.024),胶质细胞有增多的趋势,细胞排列紊乱,5组细胞总数差异无统计学意义。见图3

2.3 TUNEL

从5组大鼠MVZ的TUNEL图像及凋亡指数的柱状图可以看出:与对照组及GTS-21组相比,模型组与MLA组大鼠MVZ区细胞明显凋亡,凋亡指数(AI)高于对照组[(25.40±9.13)% vs. (0.53±0.09)%,P=0.000],GTS-21具有降低脓毒症导致的凋亡的趋势[(17.03±4.16)% vs. (25.40±9.13)%,P=0.000],MLA较GTS-21增加凋亡[(29.11±4.60)% vs. 17.03±4.16)%,P=0.000],见图4

2.4 免疫荧光双标(CHAT,TH/Caspase 3)

各组TH/ Caspase 3及CHAT/Caspase 3免疫荧光双标的结果显示脓毒症诱导MVZ儿茶酚能神经元和胆碱能神经元较对照组Caspase 3表达显著升高(0.001 94±0.000 72 vs.0.000 39±0.000 34;0.003 38±0.001 25 vs. 0.000 39±0.000 28,P=0.021,P=0.000),TH表达显著降低(0.001 62±0.000 73 vs. 0.004 58±0.001 48,P=0.000),但CHAT仅有下降的趋势(0.003 70±0.002 82 vs. 0.005 27±0.001 86,P=0.761);GTS-21具有降低脓毒症儿茶酚胺能和胆碱能神经元Caspase 3表达(0.002 53±0.001 02 vs. 0.003 38±0.001 25;0.001 16±0.000 82 vs. 0.001 94±0.000 72,P=0.741,P=0.002),并上调脓毒症TH与CHAT表达的趋势(其结果分别为0.002 58±0.000 69,0.004 85±0.001 51,P=0.488,P=0.994);MLA则促进脓毒症导致的儿茶酚胺能和胆碱能神经元Caspase 3表达(0.003 61±0.001 91,0.003 73±0.001 07,P=0.066,P=0.000),显著降低TH与CHAT表达(0.001 17±0.000 69,0.002 41±0.000 47,P=0.000,P=0.019),见图56

2.5 RT-PCR

以β-actin作内参,计算GAP-43 mRNA,GFAP mRNA,VEGF mRNA,MMP-9 mRNA and Olig-2 mRNA相对表达量。这些基因的表达与神经炎症,损失,修复,髓鞘化,胶质化等神经重塑密切相关。与对照组相比,脓毒症显著上调了关键基因GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(2.188±0.238 vs. 1.022±0.231,2.825±0.267 vs. 1.071±0.062,3.689±0.320 vs. 1.060±0.120,3.169±0.241 vs. 1.073±0.153,P=0.000),下调了Olig-2 mRNA的表达(0.534±0.067 vs. 1.027±0.172,P=0.000)。GTS-21的干预下调了脓毒症GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(1.655±0.125,1.676±0.106,2.085±0.308,2.043±0.255,P=0.000,P=0.195,P=0.005,P=0.002),具有上调Olig-2 mRNA的表达趋势(0.718±0.068,P=0.001);反之,与GTS-21相比,MLA则显著上调了GAP-43 mRNA、GFAP mRNA、VEGF mRNA和MMP-9 mRNA的表达(3.029±0.180,3.756±0.376,4.768±0.342,3.949±0.408,P=0.000),显著下调了Olig-2 mRNA的表达(0.232±0.053,P=0.000),见图7

3 讨 论

研究表明[22-23]:在脓毒症大鼠的中枢,LPS能通过Toll-like receptor 4激活星形胶质细胞,产生促炎细胞因子,诱导神经炎症;此外,外周血循环中的细胞因子也能通过破损的血脑屏障进入中枢,直接诱导神经炎症[24-25]。神经炎症可通过抑制核因子κB(nuclear factorκB,NF-κB)/STAT3/ERK通路和线粒体介导的凋亡诱导神经细胞凋亡,神经变性及代谢紊乱[26-27],并影响区域神经功能。据此,并结合前期研究[21]推测,脓毒症可诱导MVZ的神经炎症并影响其对系统性炎症的调控,可能与脓毒症早期失控的炎症风暴相关,基于α7nAChR激活可通过多种途径保护神经元免受炎症的攻击[28],激活α7nAChR遏制脓毒症的炎症风暴可能涉及到其对中枢MVZ神经元的保护作用。本研究发现,虽然脓毒症早期大鼠脑组织的外观无明显改变,但HE染色发现,脓毒症各组MVZ神经元明显下降,神经胶质细胞明显增生,表明脓毒症诱导的神经炎症通过氧化应激,导致MVZ神经元损伤与凋亡;同时,神经炎症可能上调了GFAP,使胶质细胞数量增加并处于活化状态。

进一步的TUNEL实验证实了脓毒症诱导MVZ神经元凋亡及胆碱能抗炎通路中枢干预具有明确的效果,GTS-21能明显减少脓毒症MVZ细胞凋亡,而MLA则可使凋亡进一步加重的趋势,验证了中枢CAP激活能发挥抗凋亡作用。研究证实[29-31]:CAP终端分泌的乙酰胆碱能激活小胶质细胞表面的α7nAChR,α7nACHR被激活后通过Janus激酶/信号转导及转录激活因子(janus kinase/signal transducers and activator of transcription,JAK/STAT)信号通路,NF-κB信号转导通路,从而减少肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、高迁移率族蛋白1、白细胞介素-1β、白细胞介素-6等炎症因子的产生,并提高白细胞介素-10等抗炎因子水平,减少小胶质细胞激活,使小胶质细胞生长受到限制,从而快捷有效地抑制神经炎症,减少凋亡。

MVZ区域包含多种类型的神经元,胆碱能神经元直接参与系统性炎症的调控[32];儿茶酚胺能神经元投射到迷走神经背侧运动核和延髓网状结构,也参与了MVZ对炎症与免疫及应激反应的调控[33]。为进一步验证2种神经元的活性及凋亡情况,本课题组进行了CHAT/Caspase 3 and TH/Caspase 3免疫荧光双标记测定,结果表明:脓毒症导致2种神经元明显凋亡,伴随凋亡,TH表达明显下降,GTS-21明显减少了儿茶酚胺能神经元的凋亡并增加TH表达,MLA明显增加了儿茶酚胺能神经元的凋亡并进一步降低了TH的表达;GTS-21能升高脓毒症CHAT表达的趋势,MLA则明显降低脓毒症CHAT表达。提示激活中枢CAP能降低神经炎症水平,在抗凋亡同时,改善脑组织损伤,并提高了功能神经元的活性[34-35]。在此,本课题组发现脓毒症对胆碱能神经元和儿茶酚胺能神经元影响并不同步,伴随着MVZ神经元凋亡的加重,TH表达同步降低,而CHAT表达并无明显影响,可能与脓毒症促使MVZ胆碱能系统功能活化,以增加迷走输出,从而发挥系统性抗炎的重要机制[36-37],也间接表明MVZ中对炎症起调节作用的主要为胆碱能神经元。

病理学研究提示,脓毒症导致MVZ神经凋亡及组织重构,即胶质细胞增生及神经元减少。为进一步明确MVZ神经组织重构的倾向及调控机制,本课题组依次检测了各组GAP-43 mRNA,Olig-2 mRNA,VEGF mRNA,GFAP mRNA,MMP-9 mRNA表达水平。与对照组比较,GAP-43 mRNA,VEGF mRNA,GFAP mRNA,MMP-9 mRNA在脓毒症模型组中表达明显上调,Olig-2 mRNA表达则明显下调;GTS-21可明显降低GAP-43 mRNA,VEGF mRNA,GFAP mRNA,MMP-9 mRNA的表达,提升Olig-2 mRNA表达;MLA则相反。

GAP-43涉及到神经元的再生,轴突的延伸,突触发育与重建调控,从而恢复受损的神经功能[38-39],根据神经受损的情况而动态改变其表达水平[40],与神经炎症,神经损伤和修复相关。MMP是一类具有重构细胞外基质功能的蛋白酶[41-42],在神经组织受到各种生理刺激和病理损伤后,神经炎症水平升高,从而促使其含量,活性和基因表达水平明显上调,通过控制树突棘的形状和兴奋性突触的功能参与突触可塑性的动态调节[43-44],其表达可反应神经炎症的水平。GFAP是神经炎症的生物标记物[45-46],其表达增高表明胶质细胞的激活和神经组织的胶质化。血管内皮生长因子(vascular endothelial growth factor,VEGF)通过刺激内皮细胞迁移,增殖和生成成来促进血管新生,也与神经损伤,神经炎症,神经恢复等相关[47-48]。本研究可以看出,脓毒症导致其MVZ神经炎症,神经损伤与修复。GTS-21能抑制神经炎症,促进神经恢复;MLA则恶化神经炎症。因此,脓毒症诱导的炎症风暴与MVZ的损伤,CAP调控紊乱相关,干预中枢CAP对系统性炎症有重要影响。Olig-2是少突胶质细胞特异性标记物,其表达的下降提示髓鞘化降低[49],Olig-2水平升高与髓鞘破坏后代偿性再生有关[50]。可见前期研究所示脓毒症导致心率变异性下降与脓毒症诱导的神经炎症进一步导致髓鞘化异常,从而导致CAP指令传出障碍相关。GTS-21通过抗炎而促进髓鞘化,MLA则恶化神经炎症,加剧髓鞘破坏而进一步损伤CAP对外周炎症风暴的调控。

本研究揭示了MVZ的神经炎症可能是脓毒症系统性炎症调控紊乱的重要机制,中枢CAP的激活可能成为遏制脓毒症早期炎症风暴的有效干预措施。但本研究亦有以下不足:首先,本研究没有直接探索MVZ的神经炎症及干预CAP对外周CAP调控的影响,比如对迷走神经电活动及脾组织释放乙酰胆碱的影响,因此尚不能完全说明中枢MVZ的病理损害及干预是否为系统性炎症失控及干预的根本原因。此外,本研究采用腹腔给予α7nAChR的激动剂与拮抗剂进行干预,因其对中枢及外周都有作用,究竟是对系统性炎症的直接干预导致MVZ的病理变化,还是因为直接干预MVZ的炎症导致系统性炎症水平的变化为主,尚不能完全明确。最后,Olig-2 mRNA表下调是否意味着MVZ脱髓鞘,从而导致CAP的传出障碍与系统性炎症的失控,需要进一步证实。下一步,本研究将聚焦以上几个问题进一步探索,为中枢抗炎,促髓鞘化等手段治疗脓毒症提供理论基础。

本研究初步证实了脓毒症诱导MVZ神经炎症、功能神经元凋亡及活性的改变、髓鞘化异常等,从而导致CAP对系统性炎症的调控障碍,可能是脓毒症诱导炎症风暴的重要机制;胆碱能抗炎通路的干预能明显影响上述过程。激活α7nAChR可改善MVZ中枢病理结构,使其向“正常化”方向发展,可能是其遏制外周炎症风暴的重要机制之一;而α7nAChR的拮抗剂则相反,因此,抑制MVZ神经炎症可能成为脓毒症炎症失控的重要干预靶点。

参考文献

[1]

Bréchot NHajage DKimmoun Aet al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock:a retrospective,multicentre,international cohort study[J]. Lancet2020396(10250):545-552.

[2]

Carlet JPayen DOpal SM. Steroids for sepsis and ARDS:this eternal controversy remains with COVID-19[J]. Lancet2020396(10259):e61-e62.

[3]

Pavlov VATracey KJ. Neural regulation of immunity:molecular mechanisms and clinical translation[J]. Nat Neurosci201720(2):156-166.

[4]

Hu SWang YDLi HB. The regulation effect of α 7nAChRs and M1AChRs on inflammation and immunity in sepsis[J]. Mediators Inflamm20212021:9059601.

[5]

Ye ZPZhu YJTang NNet al. α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates DSS-induced intestinal colitis by improving intestinal mucosal barrier function[J]. Mol Med202228(1):59.

[6]

Pastor VCastillo Díaz FSanabria VCet al. Prefrontal cortex nicotinic receptor inhibition by methyllycaconitine impaired cocaine-associated memory acquisition and retrieval[J]. Behav Brain Res2021406:113212.

[7]

Li HBZhou YZhao AHet al. Exploring the mechanism on the medullary visceral zone inhibiting the cholinergic anti-inflammatory pathway induced by sepsis[J]. Mediators Inflamm20202020:1320278.

[8]

Stevens KECornejo BAdams CEet al. Continuous administration of a selective alpha7 nicotinic partial agonist,DMXBA,improves sensory inhibition without causing tachyphylaxis or receptor upregulation in DBA/2 mice[J]. Brain Res20101352:140-146.

[9]

Liu YHu JWu Jet al. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation[J]. J Neuroinflammation20129:98.

[10]

Takata KAmamiya TMizoguchi Het al. Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA(GTS-21) attenuates Aβ accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer’s disease[J]. Neurobiol Aging201862:197-209.

[11]

Ren CLi XHWang SBet al. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality[J]. Int J Biol Sci201814(7):748-759.

[12]

Wu KLHChan SHHChan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation[J]. J Neuroinflammation20129:212.

[13]

Amorim MRde Deus JLCazuza RAet al. Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation[J]. J Neuroinflammation201916(1):125.

[14]

Witlox JEurelings LSde Jonghe JFet al. Delirium in elderly patients and the risk of postdischarge mortality,institutionalization,and dementia:a meta-analysis[J]. JAMA2010304(4):443-451.

[15]

郝军舰,冯智明,才 新,. 血必净对盲肠结扎穿孔手术诱导的脓毒症模型大鼠肺损伤的治疗作用[J]. 中华实验外科杂志201936(6):1141.

[16]

Hao JJFeng ZMCai Xet al. Therapeutic effect of Xuebijing on sepsis model rats induced by cecal ligation and perforation[J]. Chin J Exp Surg201936(6):1141.

[17]

周文海,李建国. 脓毒症和胆碱能抗炎通路模型的建立[J]. 武汉大学学报(医学版)201637(5):748-751,771.

[18]

Zhou WHLi JG. Establishment of sepsis and cholinergic anti-inflammatory pathway model[J]. Med J Wuhan Univ201637(5):748-751,771.

[19]

苗珍花,王 银,田建英,. α7nACh受体竞争性拮抗剂甲基牛扁亭对昆明小鼠认知功能的损伤[J]. 解剖学杂志201033(6):764-767.

[20]

Miao ZHWang YTian JYet al. Mechanism of cognitive impairment by α7nAChR competitive antagonist methyllycaconitine in mouse[J]. Chin J Clin Anat201033(6):764-767.

[21]

江秀慧,张子莘,张信鸽. α7nAchR烟碱型乙酰胆碱受体拮抗剂对高氧保护脓毒症小鼠效应的影响[J]. 中外健康文摘2014(3):44-46.

[22]

Jiang XHZhang ZXZhang XG. Effect of α7nAchR nicotinic acetylcholine receptor antagonist on the protective effect of high oxygen on septic mice[J]. Chinese and foreign health abstracts2014(3):44-46

[23]

Shrum BAnantha RVXu SXet al. A robust scoring system to evaluate sepsis severity in an animal model[J]. BMC Res Notes20147:233.

[24]

Sulzbacher MMSulzbacher LMPassos FRet al. Adapted murine sepsis score:improving the research in experimental sepsis mouse model[J]. Biomed Res Int20222022:5700853.

[25]

李红兵,李 媛,王武石,. 胆碱能抗炎通路对脓毒症大鼠早期炎症与免疫反应具有负向调控作用[J]. 南方医科大学学报202040(5):647-653.

[26]

Li HBLi YWang WSet al. Cholinergic anti-inflammatory pathway plays negative regulatory role in early inflammatory and immune responses in septic rats[J]. J South Med Univ202040(5):647-653.

[27]

Mrak R EGriffin W. Glia and their cytokines in progression of neurodegeneration.[J]. Neurobiology of Aging200526(3):349-354.

[28]

Wang ZWu LYYou WCet al. Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage:possible involvement of TLR4-mediated inflammatory pathway[J]. J Pineal Res201355(4):399-408.

[29]

Brites DFernandes A. Neuroinflammation and depression:microglia activation,extracellular microvesicles and microRNA dysregulation[J]. Front Cell Neurosci20159:476.

[30]

Zhang FZhang JGYang Wet al. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation[J]. Biomedecine Pharmacother2018107:1523-1529.

[31]

Wang CZhang LNdong JCet al. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice[J]. J Neuroinflammation201916(1):238.

[32]

Yu HYCleveland DW. Tuning apoptosis and neuroinflammation:TBK1 restrains RIPK1[J]. Cell2018174(6):1339-1341.

[33]

Su YZhang WZhang RXet al. Activation of cholinergic anti-inflammatory pathway ameliorates cerebral and cardiac dysfunction after intracerebral hemorrhage through autophagy[J]. Front Immunol202213:870174.

[34]

Giebelen IAvan Westerloo DJLaRosa GJet al. Stimulation of alpha 7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor alpha-independent mechanism[J]. Shock200727(4):443-447.

[35]

Wang KFChen QJWu NHet al. Berberine ameliorates spatial learning memory impairment and modulates cholinergic anti-inflammatory pathway in diabetic rats[J]. Front Pharmacol201910:1003.

[36]

Matteoli GGomez-Pinilla PJNemethova Aet al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen[J]. Gut201463(6):938-948.

[37]

Pavlov VAParrish WRRosas-Ballina Met al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway[J]. Brain Behav Immun200923(1):41-45.

[38]

Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure[J]. Brain Res20101350:18-34.

[39]

Duris KLipkova JJurajda M. Cholinergic anti-inflammatory pathway and stroke[J]. Curr Drug Deliv201714(4):449-457.

[40]

Krafft PRMcBride DRolland WBet al. α 7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage[J]. Biomed Res Int20172017:8134653.

[41]

Ellis JM. Cholinesterase inhibitors in the treatment of dementia[J]. J Am Osteopath Assoc2005105(3):145-158.

[42]

Waldburger JMBoyle DLEdgar Met al. Spinal p38 MAP kinase regulates peripheral cholinergic outflow[J]. Arthritis Rheum200858(9):2919-2921.

[43]

Holahan MR. A shift from a pivotal to supporting role for the growth-associated protein(GAP-43) in the coordination of axonal structural and functional plasticity[J]. Front Cell Neurosci201711:266.

[44]

Castrén EAntila H. Neuronal plasticity and neurotrophic factors in drug responses[J]. Mol Psychiatry201722(8):1085-1095.

[45]

Zhu XKWang PLiu HJet al. Changes and significance of SYP and GAP-43 expression in the hippocampus of CIH rats[J]. Int J Med Sci201916(3):394-402.

[46]

Heuser KHoddevik EHTaubøll Eet al. Temporal lobe epilepsy and matrix metalloproteinase 9:a tempting relation but negative genetic association[J]. Seizure201019(6):335-338.

[47]

Li HMYue PJSu YYet al. Plasma levels of matrix metalloproteinase-9:a possible marker for cold-induced stroke risk in hypertensive rats[J]. Neurosci Lett2019709:134399.

[48]

Stawarski MStefaniuk MWlodarczyk J. Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines[J]. Front Neuroanat20148:68.

[49]

Lepeta KKaczmarek L. Matrix metalloproteinase-9 as a novel player in synaptic plasticity and schizophrenia[J]. Schizophr Bull201541(5):1003-1009.

[50]

Oeckl PWeydt PSteinacker Pet al. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase[J]. J Neurol Neurosurg Psychiatry201990(1):4-10.

[51]

Abu-Rumeileh SSteinacker PPolischi Bet al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia[J]. Alzheimers Res Ther201912(1):2.

[52]

Touyz RMLang NN. Hypertension and antiangiogenesis:the Janus face of VEGF inhibitors[J]. JACC CardioOncol20191(1):37-40.

[53]

Ureña-Guerrero MECastañeda-Cabral JLRivera-Cervantes MCet al. Neuroprotective and neurorestorative effects of epo and VEGF:perspectives for new therapeutic approaches to neurological diseases[J]. Curr Pharm Des202026(12):1263-1276.

[54]

Beigi Boroujeni FPasbakhsh PMortezaee Ket al. Intranasal delivery of SDF-1α-preconditioned bone marrow mesenchymal cells improves remyelination in the cuprizone-induced mouse model of multiple sclerosis[J]. Cell Biol Int202044(2):499-511.

[55]

Ferensztajn-Rochowiak ETarnowski MSamochowiec Jet al. Increased mRNA expression of peripheral glial cell markers in bipolar disorder:the effect of long-term lithium treatment[J]. Eur Neuropsychopharmacol201626(9):1516-1521.

基金资助

贵州省自然科学基金重点课题资助项目(编号:黔科合基础-ZK[2023]重点001)

贵州省科技厅科研课题资助项目(黔科合基础[2019]1005)

贵州省卫健委科学技术基金资助项目(gzwkj2021-001)

AI Summary AI Mindmap
PDF (6655KB)

214

访问

0

被引

详细

导航
相关文章

AI思维导图

/