肿瘤切除程度对脑胶质瘤光动力治疗后脑水肿及预后的影响

李婧萱 ,  闫秀伟 ,  胡韶山

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (09) : 1163 -1170.

PDF (1070KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (09) : 1163 -1170. DOI: 10.13406/j.cnki.cyxb.003577
临床研究

肿瘤切除程度对脑胶质瘤光动力治疗后脑水肿及预后的影响

作者信息 +

Influence of the degree of tumor resection on cerebral edema and prognosis after photodynamic therapy for gliomas

Author information +
文章历史 +
PDF (1095K)

摘要

目的 使用光动力疗法(photodynamic therapy,PDT)辅助显微手术的综合治疗可以有效改善恶性脑胶质瘤患者的预后,提高生存率。本研究将探讨肿瘤的不同切除程度对高级别胶质瘤PDT后脑水肿及预后的影响。 方法 对2020年1月至2022年12月浙江省人民医院进行PDT辅助显微手术的高级别胶质瘤患者进行回顾性病例对照研究,收集患者基线资料和生存数据,对比肿瘤的不同切除程度对高级别胶质瘤PDT后脑水肿及预后的影响。 结果 近全切除组纳入30例,次全切除组纳入26例进行分析。通过统计发现,接受光动力辅助近全切除的患者术后脑水肿程度更低(16.67%的近全切除组患者出现Ⅲ级脑水肿,50%的次全切除组患者出现Ⅲ级脑水肿,P=0.011),其无进展生存期(progression free survival,PFS)(近全切除组15.63个月vs. 次全切除组8.36个月,P=0.002 5)也明显优于接受光动力辅助次全切除的患者。近全切除组患者生存质量更高(近全切除组患者的生存质量评分明显大于次全切除组,术后3个月P<0.001,术后6个月P=0.002)。 结论 光动力疗法辅助近全切除的综合治疗方式可显著降低高级别胶质瘤患者术后脑水肿程度,有助于提高患者术后生存质量、抑制肿瘤的复发以及延长患者的总生存期。

Abstract

Objective To investigate the influence of different degrees of tumor resection on cerebral edema and prognosis after photodynamic therapy(PDT) for high-grade glioma,since multimodality therapy with PDT and microsurgery can effectively improve the prognosis and survival rate of patients with malignant glioma. Methods A retrospective case-control study was conducted for the patients with high-grade glioma who underwent PDT and microsurgery in Zhejiang Provincial People’s Hospital from January 2020 to December 2022,and baseline data and survival data were collected from all patients. The influence of different degrees of tumor resection on cerebral edema and prognosis after PDT for high-grade glioma was analyzed and compared. Results There were 30 cases in the near-total resection group and 26 cases in the subtotal resection group. The statistical analysis showed that the patients receiving photodynamic-assisted near-total resection had a lower degree of postoperative cerebral edema(16.67% of the patients in the near-total resection group developed grade Ⅲ cerebral edema,and 50% of the patients in the subtotal resection group developed grade Ⅲ cerebral edema,P=0.011),as well as significantly better progression-free survival than those receiving photodynamic-assisted subtotal resection(15.63 months vs. 8.36 months,P=0.0025). The patients in the near-total resection group had a better quality of life,and the near-total resection group had a significantly higher quality of life score than the subtotal resection group (three months after surgery: P<0.001;six months after surgery:P=0.002). Conclusion The multimodality therapy with PDT and near-total resection can significantly reduce the degree of cerebral edema in patients with high-grade glioma and help to improve postoperative quality of life,inhibit tumor recurrence,and prolong the overall survival of patients.

Graphical abstract

关键词

胶质瘤 / 光动力 / 近全切除 / 次全切除 / 脑水肿

Key words

glioma / photodynamic therapy / near-total resection / sub-total resection / cerebral edema

引用本文

引用格式 ▾
李婧萱,闫秀伟,胡韶山. 肿瘤切除程度对脑胶质瘤光动力治疗后脑水肿及预后的影响[J]. 重庆医科大学学报, 2024, 49(09): 1163-1170 DOI:10.13406/j.cnki.cyxb.003577

登录浏览全文

4963

注册一个新账户 忘记密码

胶质瘤是一种极具侵袭性和异质性的原发性脑肿瘤,占中枢神经系统恶性肿瘤的81%。它们通常起源于脑胶质细胞或前体细胞,并发展为星形细胞瘤、少突胶质细胞瘤、室管膜瘤或少突星形细胞瘤[1-3]。高级别胶质瘤的发病率约为5/10万,在50~69岁的患者中发病率最高[4-6]。即使经过包括手术切除、化疗和放疗(radiotherapy,RT)等在内的标准治疗,高级别胶质瘤患者的预后仍不容乐观[7-9]。大量临床研究支持肿瘤切除程度是高级别胶质瘤患者生存期的重要预测指标,核磁增强成像下的肿瘤的完全切除或近全切除已被证明是增加无进展生存期(progression free survival,PFS)和总生存期(overall survival,OS)的独立预后因素[10-13]
胶质瘤的不良预后主要因为即使经过手术及规范的放疗、化疗治疗后患者仍会在短期内复发。并且有研究发现,超过80%高级别胶质瘤的复发位于邻近肿瘤切除腔的区域[14-15]。因此高级别胶质瘤患者的不良预后推动了对其新的有效治疗方式的探索。近年来,免疫疗法、磁热疗法、聚焦超声、射频微波和光动力疗法(photodynamic therapy,PDT)等新型辅助疗法,已经在临床应用上取得出不同程度的进展[16-20]。在众多新型辅助疗法中,PDT以其选择性高,适用性强,可重复照射等优点成为人们研究的热点[21]
虽然PDT辅助显微手术治疗可以减少脑胶质瘤局部复发的风险 [22-23]。但是在临床应用中发现,辅助PDT治疗后,会出现脑组织肿胀、颅内高压等一系列问题,可能会导致患者神经功能缺损甚至危及生命。通过对PDT的生物学效应及作用机制进行研究发现,PDT过度照射引起的一系列不良反应可能与术中肿瘤细胞残余有关,即术中肿瘤体积残余越多,氧化应激反应越强烈。因此,基于现有技术的总结和探索,本实验将对PDT辅助不同程度的肿瘤切除(近全切除以及次全切除)的高级别脑胶质瘤患者进行统计分析,通过对比术后患者的脑水肿程度、神经功能状态、OS、PFS等临床特征找出有效的高级别脑胶质瘤治疗手段。

1 材料与方法

1.1 基础资料

本试验收集了2020年1月至2022年9月期间就诊于浙江省人民医院的高级别胶质瘤患者。这些病例采用团队方式完成收集,包括1名神经外科主任医生,2名神经外科主治医生。本研究经浙江省人民医院机构审核委员会批准。所有患者均提供知情同意书。本研究符合作者所在单位人体试验伦理委员会所制定的伦理学标准,伦理审批号为:QT2022057。患者没有经过有目的性的筛选。在研究期间,共收集56名患者,包括原发性和复发性胶质瘤,世界卫生组织分级(2021年版)均为3~4级。

1.2 纳入与排除标准

纳入标准为:年龄≥18岁;脑实质胶质瘤;手术前1周及术后1周内进行核磁增强扫描;患者术后随访期多于6个月;患者出院后进行规律随访。排除标准为:术前、术后影像资料缺失;未联合使用PDT治疗;患者随访资料缺失;患者因非胶质瘤并发症死亡。

1.3 光动力治疗

患者术前48 h静脉给予血卟啉注射液(5 mg/kg),给药后严格避光。所有患者均由同一位经验丰富的神经外科教授进行了开颅手术,并在切除肿瘤后进行了PDT辅助治疗。PDT的激光光源的波长为630 nm。激光功率密度参照中国抗癌协会技术指南,符合国际操作标准:平均功率密度为100 mW/cm2,高灌注区功率密度为150~200 mW/cm2

1.4 研究分组

近全切除定义为术后48 h内MRI增强扫描未检测到原病灶残留或残留病灶小于5%;次全切除定义为术后MRI增强残留病灶大于等于5%,小于80%。根据术后MRI增强将患者分为近全切除组(gross-total resection group,GTRG)及次全切除组(sub-total resection group,STRG)[24]

1.5 患者脑水肿程度及生存质量数据收集

根据Steinhoff H等[25]人对患者脑水肿范围进行分级。1级-肿瘤周围水肿小于等于2 cm;2级-肿瘤周围水肿在2 cm到一侧大脑半球一半之间;3级-肿瘤周围水肿超过一侧大脑半球一半。于手术后3~5 d复查患者核磁共振增强扫描,根据水肿最大层面对患者进行脑水肿分级。患者的预后主要评估两种不同手术方式对患者OS及PFS两种指标。根据Kamofsky评分[26],由1位不知情患者分组的临床医生对患者进行评分,记录患者入院时,术后第3个月、6个月的生存质量。

1.6 统计学方法

所有实验数据采用SPSS 23.0软件进行统计分析,符合正态分布的定量资料以(x±s)表示,组间均数比较方差齐时采用成组t检验,方差不齐时采用校正t检验;不符合正态分布的定量资料采用Wilcoxon秩和检验,以MdP25P75)表示。定性资料采用百分率表示,采用卡方检验。生存率分析采用多项Cox-Hazard统计。检验水准α=0.05。

2 结果

2.1 一般情况

2020年9月至2022年9月浙江省人民医院共收住56例符合纳入排除标准的脑胶质瘤患者。根据患者术后核磁共振增强图像,GTRG纳入30例进行分析,STRG纳入26例进行分析。患者一般情况如表1所示,平均发病年龄为(51.84±12.78)岁,48.21%的患者为男性。2组患者男女比例均衡(χ2 =0.083,P=0.774),首次手术和再次手术的比例相当(χ2 =0.001,P=0.982),2组病理分子类型O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA methyltransferase,MGMT)(χ2 =0.186,P=0.666)及异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)分布相似(χ2 =0.107,P=0.743),患者术前格拉斯哥昏迷评分法(Glasgow Coma Scale,GCS)评分(χ2 =1.791,P=0.072)及Kamofsky评分(χ2 =1.142,P=0.251)分布均衡。患者术后遵循相同的化疗方案及RT剂量:包括伴随6周的RT联合替莫唑胺化疗,然后是6个周期的辅助替莫唑胺化疗。对于复发性胶质瘤患者,丙卡嗪、洛莫司汀和长春新碱联合化疗是首选方案。

2.2 患者脑水肿分级评估

根据患者手术前后核磁共振增强图像对患者最大层面脑水肿面积进行分级,分级结果如表2所示,不同患者脑水肿分级分布图如图1所示。2组患者核磁共振增强T2像对比如图2所示。分析结果发现,GTRG患者的脑水肿程度明显低于STRG,差异有统计学意义(χ2 =9.016,P=0.011)。

2.3 患者第3个月、6个月Kamofsky评分

统计患者术后第3个月及6个月Kamofsky评分见表3,探究肿瘤切除(近全切除和次全切除)程度对脑胶质瘤PDT治疗后患者生存质量有无差异。分析结果表明,GTRG患者的术后生存质量明显优于STRG,差异有统计学意义(术后第3个月Kamofsky评分:χ2 =14.981,P<0.001;患者术后第6个月Kamofsky评分:χ2 =15.608,P=0.002)。对可能影响患者术后第3个月,第6个月的因素进行单因素分析发现,入院Karnofsky评分;入院GCS评分;切除程度的差异具有统计学意义(表4)。调整入院Karnofsky评分及入院GCS评分后,结果与未调整组相似(β=-14.181,95%CI=-19.232~-9.129,P<0.001),证明脑胶质瘤的切除程度与患者生存质量独立相关。

2.4 患者的预后统计

截至2023年08月30日,统计GTRG及STRG 2组患者的OS及PFS。分析结果如图3所示,相对于STRG,GTRG患者的OS明显延长(GTRG:20.37个月,STRG:15.01个月,P=0.004)。同样地,相对于STRG,GTRG患者的PFS也明显延长(GTRG:15.63个月,STRG:8.83个月,P=0.002 5)。对影响患者OS的相关性因素进行单因素分析表明(表5),切除程度及患者术后第3、第6个月Kamofsky评分是影响患者OS的危险因素。将切除程度及患者术后第3、第6个月Kamofsky评分对患者OS及PFS的影响纳入分析。多因素分析表明(表6),切除程度能影响患者的生存时间(HR=3.307,95%CI=1.038~10.535,P=0.043)。

3 讨论

PDT是一种新型的肿瘤微创辅助治疗手段,已被广泛应用于脑胶质瘤的治疗当中,并被证明能够延缓单一肿瘤的复发。早在1980人们开始应用PDT治疗脑恶性肿瘤,随后大量的随机对照临床试验表明,PDT能延长脑胶质瘤患者的生存期[27-30]。被当光敏剂被适当波长的光激发后,能量将从光转移到分子氧,通过I型(超氧化物)和/或Ⅱ型(单线态氧)光化学反应产生活性氧(Reactive oxygen species,ROS)等细胞毒性光产物杀伤肿瘤细胞。在PDT治疗肿瘤的过程中,Ⅱ型反应往往占主导地位,ROS是PDT生物效应的主要细胞毒剂。PDT介导肿瘤破坏的机制主要有3种。首先,PDT产生的ROS可通过诱导肿瘤细胞凋亡和坏死直接破坏肿瘤细胞[31-32]。其次,PDT还可破坏血管使肿瘤细胞由于缺氧而间接死亡。最后,PDT后能引发由促炎介质(包括各种细胞因子、生长因子和蛋白质)的释放引发的急性炎症反应[33-34]在应用PDT进行临床治疗中发现,PDT治疗后经常出现细胞、组织水肿的情况。当一个较为封闭的颅腔内出现持续加重的组织水肿后,将导致患者出现难以治疗的颅内高压,进而导致患者出现头痛、呕吐、癫痫等一系列不良反应[35-37]。Mathews MS等[38]对正常大鼠进行PDT后,实验发现大鼠脑水肿增加。对大鼠脑部进行组织学切片后发现,水肿区多为血管周围蛋白性水肿,同时可见大量星形胶质细胞及负载含铁血黄素的巨噬细胞。实验证明,PDT治疗大鼠时出现的脑水肿为血管源性脑水肿[39]。通过查阅文献资料及结合实验结果,PDT导致水肿出现的机制可能与促进炎症因子合成、激活小胶质细胞、触发损伤部位免疫反应有关。首先,PDT诱导的抗肿瘤作用通过细胞毒性反应使细胞受损,水肿液分布于细胞内,形成细胞毒性脑水肿[40-41]。其次,PDT还会破坏肿瘤微血管,使内皮细胞、神经细胞(如星形胶质细胞及神经元细胞)和基底膜组成的血脑屏障(blood–brain barrier,BBB)完整性受损。脑胶质瘤细胞浸润的瘤周脑组织往往伴随着不同程度的血管源性脑水肿的发生,血清蛋白和水肿液会通过肿瘤血管壁弥散到周围脑组织的细胞外空间中。PDT后BBB通透性增加,使血清蛋白和水肿液渗漏到肿瘤的细胞外空间和周围脑组织,导致组织出现血管源性脑水肿[42-43]。最后,PDT后大脑被外周来源的免疫细胞(即中性粒细胞和巨噬细胞)浸润时,炎症因子合成增加、小胶质细胞激活、触发损伤部位免疫反应,引发血管损伤和栓塞,从而导致局部回流受阻和渗出,堵塞中脑导水及脑室回流,也会导致脑水肿的出现[44]。当PDT术后BBB被破坏,受损的大脑被外周来源的免疫细胞(即中性粒细胞和巨噬细胞)浸润时,大脑中常驻的星形胶质细胞和小胶质细胞被激活,导致细胞凋亡和坏死细胞死亡,继而导致脑水肿发生[45]。由于PDT特殊的作用机制,PDT诱导的抗肿瘤作用不仅通过细胞毒性介导使细胞受损,还通过破坏肿瘤微血管,使剩余的肿瘤细胞缺乏必需的氧气和营养,导致免疫原性细胞死亡,也会导致脑水肿的发生和发展。

本试验还统计了2组患者PFS及OS的指标。结果发现,2组患者的平均OS均高于世界卫生组织标准(高级别脑胶质瘤患者的中位生存期约为14.6个月),同时对可能影响患者OS的危险因素进行单因素分析及多因素分析均显明,切除程度能延长脑胶质瘤患者的生存时间。这进一步证明了PDT辅助显微手术治疗高级别胶质瘤能有效杀伤残留在或迁移到瘤周的浸润性肿瘤细胞,PDT通过局部引发高氧化应激反应,破坏肿瘤微血管环境,导致肿瘤缺氧和肿瘤细胞死亡。脑胶质瘤的切除程度一直与患者预后息息相关[46],选择适当范围的切除意味着术后更好的神经功能恢复,患者能更好地耐受术后辅助放、化疗,改善患者的预后。由于脑胶质瘤浸润性生长的特性,PDT的应用被认为是一种非创伤性的疗法,可以将杀伤范围延伸到手术切除边缘之外的肿瘤细胞,进而延缓患者复发的时间。本实验临床统计结果表明:采用PDT辅助手术的治疗方式会有效延缓高级别脑胶质瘤的复发,并提高胶质瘤患者的生存质量。同时,本研究也存在一定的局限性。首先,由于近全切除不可避免地对患者脑部的功能区造成损伤,这也可能导致患者预后的差别;其次,目前PDT辅助治疗脑胶质瘤在国内仍处于起步阶段,样本量过小,不同患者的肿瘤位置及浸润程度不同,可能出现统计方面的差异,未来还需要进一步扩大样本量,进行更深入和完善的研究。

参考文献

[1]

Arvold NDLee EQMehta MPet al. Updates in the management of brain metastases[J]. Neuro-oncology201618(8):1043-1065.

[2]

Ostrom QTGittleman HXu Jet al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013[J]. Neuro Oncol201618():v1-v75.

[3]

Haque WThong YVerma Vet al. Patterns of management and outcomes of unifocal versus multifocal glioblastoma[J]. J Clin Neurosci202074:155-159.

[4]

Frosina G. Recapitulating the key advances in the diagnosis and prognosis of high-grade gliomas:second half of 2021 update[J]. Int J Mol Sci202324(7):6375.

[5]

Sun YZYan LFHan Yet al. Differentiation of pseudoprogression from true progressionin glioblastoma patients after standard treatment:a machine learning strategy combinedwith radiomics features from T1-weighted contrast-enhanced imaging[J]. BMC Med Imaging202121(1):17.

[6]

Dong XZNoorbakhsh AHirshman BRet al. Survival trends of grade I,II,and III astrocytoma patients and associated clinical practice patterns between 1999 and 2010:a SEER-based analysis[J]. Neurooncol Pract20163(1):29-38.

[7]

Smoll NRHamilton B. Incidence and relative survival of anaplastic astrocytomas[J]. Neuro Oncol201416(10):1400-1407.

[8]

Ostrom QTPrice MNeff Cet al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019[J]. Neuro Oncol202224():v1-v95.

[9]

Ostrom QTCioffi GWaite Ket al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol202123(12 ):iii1-iii105.

[10]

Valle RDSlof JGalván Jet al. Observational,retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study)[J]. Neurologia201429(3):131-138.

[11]

Li YPRey-Dios RRoberts DWet al. Intraoperative fluorescence-guided resection of high-grade gliomas:a comparison of the present techniques and evolution of future strategies[J]. World Neurosurg201482(1/2):175-185.

[12]

Bianconi ABonada MZeppa Pet al. How reliable is fluorescence-guided surgery in low-grade gliomas?A systematic review concerning different fluorophores[J]. Cancers202315(16):4130.

[13]

Mier-García JFOspina-Santa SOrozco-Mera Jet al. Supramaximal versus gross total resection in Glioblastoma,IDH wild-type and Astrocytoma,IDH-mutant,grade 4,effect on overall and progression free survival:systematic review and meta-analysis[J]. J Neurooncol2023164(1):31-41.

[14]

Chanbour HChotai S. Review of intraoperative adjuncts for maximal safe resection of gliomas and its impact on outcomes[J]. Cancers202214(22):5705.

[15]

Sanai NBerger MS. Surgical oncology for gliomas:the state of the art[J]. Nat Rev Clin Oncol201815(2):112-125.

[16]

Xu YAbramov IBelykh Eet al. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging[J]. Front Oncol202212:979748.

[17]

Cakmakci DKarakaslar EORuhland Eet al. Machine learning assisted intraoperative assessment of brain tumor margins using HRMAS NMR spectroscopy[J]. PLoS Comput Biol202016(11):e1008184.

[18]

Belykh EShaffer KVLin CQet al. Blood-brain barrier,blood-brain tumor barrier,and fluorescence-guided neurosurgical oncology:delivering optical labels to brain tumors[J]. Front Oncol202010:739.

[19]

Charalampaki PNakamura MAthanasopoulos Det al. Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery[J]. Front Oncol20199:583.

[20]

Zhu MYChang WJing LKet al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery[J]. Theranostics20199(10):2827-2842.

[21]

Hsia TSmall JLYekula Aet al. Systematic review of photodynamic therapy in gliomas[J]. Cancers202315(15):3918.

[22]

Leroy HAGuérin LLecomte Fet al. Is interstitial photodynamic therapy for brain tumors ready for clinical practice?A systematic review[J]. Photodiagnosis Photodyn Ther202136:102492.

[23]

van Straten DMashayekhi Vde Bruijn HSet al. Oncologic photodynamic therapy:basic principles,current clinical status and future directions[J]. Cancers20179(2):19.

[24]

Almenawer SABadhiwala JHAlhazzani Wet al. Biopsy versus partial versus gross total resection in older patients with high-grade glioma:a systematic review and meta-analysis[J]. Neuro Oncol201517(6):868-881.

[25]

Steinhoff HGrumme TKazner Eet al. Axial transverse computerized tomography in 73 glioblastomas[J]. Acta Neurochir197842(1/2):45-56.

[26]

Chambless LBKistka HMParker SLet al. The relative value of postoperative versus preoperative Karnofsky Performance Scale scores as a predictor of survival after surgical resection of glioblastoma multiforme[J]. J Neurooncol2015121(2):359-364.

[27]

Donohoe CSenge MOArnaut LGet al. Cell death in photodynamic therapy:from oxidative stress to anti-tumor immunity[J]. Biochim Biophys Acta Rev Cancer20191872(2):188308.

[28]

Turubanova VDBalalaeva IVMishchenko TAet al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine[J]. J Immunother Cancer20197(1):350.

[29]

Turubanova VDMishchenko TABalalaeva IVet al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death[J]. Sci Rep202111(1):7205.

[30]

Travis ZDSherchan PHayes WKet al. Surgically-induced brain injury:where are we now?[J]. Chin Neurosurg J20195:29.

[31]

Awad AWKarsy MSanai Net al. Impact of removed tumor volume and location on patient outcome in glioblastoma[J]. J Neurooncol2017135(1):161-171.

[32]

Agostinis PBerg KCengel KAet al. Photodynamic therapy of cancer:an update[J]. CA Cancer J Clin201161(4):250-281.

[33]

Overchuk MWeersink RAWilson BCet al. Photodynamic and photothermal therapies:synergy opportunities for nanomedicine[J]. ACS Nano202317(9):7979-8003.

[34]

Civantos FJKarakullukcu BBiel Met al. A review of photodynamic therapy for neoplasms of the head and neck[J]. Adv Ther201835(3):324-340.

[35]

Zhang XFCong DMShen DWet al. The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts[J]. Lasers Surg Med201446(5):422-430.

[36]

Li BOMeng CZhang XFet al. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma[J]. Oncol Lett201611(3):2084-2090.

[37]

Seshadri MBellnier DA. The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid improves the antitumor efficacy and shortens treatment time associated with Photochlor-sensitized photodynamic therapy in vivo[J]. Photochem Photobiol200985(1):50-56.

[38]

Mathews MSChighvinadze DGach HMet al. Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain[J]. Lasers Surg Med201143(9):892-900.

[39]

Lekic TRolland WManaenko Aet al. Evaluation of the hematoma consequences,neurobehavioral profiles,and histopathology in a rat model of pontine hemorrhage[J]. J Neurosurg2013118(2):465-477.

[40]

Sherchan PHuang LWang YCet al. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model[J]. Neurobiol Dis201685:164-173.

[41]

Nase GHelm PJ,Enger,et al. Water entry into astrocytes during brain edema formation[J]. Glia200856(8):895-902.

[42]

Bartusik-Aebisher DŻołyniak ABarnaś Eet al. The use of photodynamic therapy in the treatment of brain tumors-a review of the literature[J]. Molecules202227(20):6847.

[43]

Zhang CFeng WLi YSet al. Age differences in photodynamic therapy-mediated opening of the blood-brain barrier through the optical clearing skull window in mice[J]. Lasers Surg Med201951(7):625-633.

[44]

Li FZhu GLin Jet al. Photodynamic therapy increases brain edema and intracranial pressure in a rabbit brain tumor model[J]. Acta Neurochir Suppl200696:422-425.

[45]

Leroy HAVermandel MVignion-Dewalle ASet al. Interstitial photodynamic therapy and glioblastoma:light fractionation in a preclinical model[J]. Lasers Surg Med201749(5):506-515.

[46]

Ren ZYWen JMo YYet al. A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma[J]. Lasers Med Sci202237(2):789-797.

基金资助

2022年浙江省人民医院杰出领军人才资助项目(C-2022-YYJCLJRC01)

AI Summary AI Mindmap
PDF (1070KB)

256

访问

0

被引

详细

导航
相关文章

AI思维导图

/