孕晚期睡眠剥夺对孕鼠胎盘炎症、犬尿氨酸途径及幼鼠认知功能的影响

陈光雪 ,  陈武娟 ,  王璐 ,  郑秀丽

重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (10) : 1095 -1101.

PDF (3722KB)
重庆医科大学学报 ›› 2024, Vol. 49 ›› Issue (10) : 1095 -1101. DOI: 10.13406/j.cnki.cyxb.003605
基础研究 DOI:

孕晚期睡眠剥夺对孕鼠胎盘炎症、犬尿氨酸途径及幼鼠认知功能的影响

作者信息 +

Influence of sleep deprivation in late pregnancy on placental inflammation and the kynurenine pathway in pregnant rats and the cognitive function of young rats

Author information +
文章历史 +
PDF (3810K)

摘要

目的 探究孕晚期睡眠剥夺对孕鼠胎盘炎症、犬尿氨酸途径及幼鼠认知功能的影响。 方法 24只孕18 d大鼠随机分为对照组和模型组,每组12只。水平台睡眠剥夺法建立睡眠剥夺模型,模型组接受为期72 h的睡眠剥夺,对照组不进行睡眠剥夺,正常饲养。建模完成后,对照组与模型组随机取6只孕鼠乙醚麻醉,腹主动脉采血,完整取出脑组织,剥离胎鼠、胎盘,其余6只自然分娩,正常饲养。于幼鼠出生后34 d、64 d进行行为学检测,苏木精-伊红(hematoxylin eosin,HE)染色观察胎盘组织形态,免疫荧光染色观察胎鼠海马小胶质细胞形态和神经元增殖情况。高效液相色谱法检测色氨酸、犬尿氨酸、犬尿喹啉酸(kynurenic acid,KYNA)水平。测定母鼠血浆皮质酮与胎盘组织细胞因子水平。 结果 与对照组相比,模型组幼鼠64 d旷场实验活动总距离、34 d中央区域停留时间、64 d中央区域活动距离存在差异(P<0.05),34 d高架十字迷宫实验幼鼠进入开放臂的时间增多(P<0.05),进入闭合臂的时间减少(P<0.05),64 d强迫游泳实验幼鼠不动时间增加(P<0.05)。对照组胎盘结构清晰,细胞形态正常,模型组胎盘部分滋养细胞皱缩,呈空网状,血窦减少。与对照组相比,模型组胎鼠海马神经元增殖、突起数量减少(P<0.05),小胶质细胞数量增多(P<0.05),细胞表面积增大(P<0.05),胎盘色氨酸、犬尿氨酸、KYNA、白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、胎鼠脑组织KYNA、母鼠血浆皮质酮水平升高(P<0.05)。 结论 孕晚期睡眠剥夺可能通过犬尿氨酸途径引发孕鼠胎盘炎症反应,影响幼鼠认知功能。

Abstract

Objective To investigate the influence of sleep deprivation in late pregnancy on placental inflammation and the kynurenine pathway in pregnant rats and the cognitive function of young rats. Methods A total of 24 rats pregnant for 18 days were randomly divided into control group and model group,with 12 rats in each group. The method of water platform sleep deprivation was used to establish a model of sleep deprivation; the rats in the model group received sleep deprivation for 72 hours,while those in the control group was fed normally without sleep deprivation. After modeling,6 pregnant rats were randomly selected from each group for ether anesthesia,and blood samples were collected from the abdominal aorta;brain tissue was completely removed,and stripping of fetal rats and placenta were performed. The remaining 6 rats in each group were subject to natural labor and normal feeding. Behavioral tests of the young rats were performed on days 34 and 64 days after birth;HE staining was used to observe the histomorphology of placenta,and immunofluorescent staining was used to observe the morphology of microglial cells and the proliferation of neurons in the hippocampus of fetal rats;high-performance liquid chromatography was used to measure the levels of tryptophan,kynurenine,and kynurenic acid (KYNA);the levels of plasma corticosterone and cytokines in placental tissue were measured for maternal rats. Results There were significant differences between the control group and the model group in total activity distance of the open field test on day 64,the time spent in the central area on day 34,and activity distance in the central area on day 64(P<0.05),and compared with the control group,the model group had a significant increase in the time of entering the open arm(P<0.05) and a significant reduction in the time of entering the closed arm(P<0.05) in the elevated plus maze test on day 34,as well as a significant increase in immobility time in the forced swimming test on day 64(P<0.05). The control group had a clear structure of the placenta and normal cell morphology,while the model group had shrinkage of some trophoblasts in the placenta,with a reticular structure,and a reduction in blood sinuses. Compared with the control group,the model group had significant reductions in the proliferation and processes of hippocampal neurons(P<0.05) and significant increases in the number of microglial cells(P<0.05),cell surface area(P<0.05),the levels of tryptophan,kynurenine,KYNA,interleukin-1β,interleukin-6,and tumor necrosis factor-α in the placenta,and the levels of KYNA in fetal brain tissue and corticosterone in the plasma of maternal rats (P<0.05). Conclusion Sleep deprivation in late pregnancy may induce placental inflammation in pregnant rats through the kynurenine pathway and affect the cognitive function of young rats.

Graphical abstract

关键词

孕晚期 / 睡眠剥夺 / 炎症 / 犬尿氨酸途径 / 认知功能

Key words

late pregnancy / sleep deprivation / inflammation / kynurenine pathway / cognitive function

引用本文

引用格式 ▾
陈光雪,陈武娟,王璐,郑秀丽. 孕晚期睡眠剥夺对孕鼠胎盘炎症、犬尿氨酸途径及幼鼠认知功能的影响[J]. 重庆医科大学学报, 2024, 49(10): 1095-1101 DOI:10.13406/j.cnki.cyxb.003605

登录浏览全文

4963

注册一个新账户 忘记密码

(2024-10-23)
睡眠是维持健康的基本要求,睡眠剥夺、睡眠不足可导致认知障碍,对日常功能产生负面影响,然而现今越来越多的人因工作压力、生活方式难以获得充足的睡眠,睡眠不足已发展成为社会普遍关注的问题[1-2]。孕期女性体内激素水平变化会对睡眠模式产生影响,睡眠时间会随着孕期进展缩短,睡眠更易受到干扰[3]。多项研究显示,孕期睡眠不足可提高产妇妊娠期疾病发生风险,影响胎儿发育,提高儿童发生注意力缺陷的几率[4-5]。Nakahara K等[6]的研究显示,母亲孕期不良睡眠模式与较低的睡眠质量可提高新生儿1岁时出现睡眠问题的风险。Khodaverdiloo A等[7]的研究结果表明,睡眠剥夺模型孕鼠子代鼠海马神经元数量显著减少,细胞凋亡增加。目前关于孕期睡眠剥夺对相关分子机制影响的研究较少。色氨酸是一种必需氨基酸,是多种重要生物活性化合物的底物,其代谢产物褪黑素、5-羟色胺具有调节睡眠的作用[8-9]。犬尿氨酸途径神经活性代谢物犬尿喹啉酸(kynurenic acid,KYNA)与行为障碍、认知障碍、睡眠-觉醒行为变化相关[10-11],Rentschler KM等[12]的研究表示,内源性KYNA水平增高可损害记忆形成,增多夜间唤醒次数,减少快速眼动睡眠,而Mithaiwala MN等[13]的研究表明,胎儿KYNA升高可能对神经发育产生负面影响,导致成年后犬尿氨酸途径代谢和认知缺陷的长期变化。本次研究通过动物实验探究孕晚期睡眠剥夺对孕鼠胎盘炎症、犬尿氨酸途径及幼鼠认知功能的影响,现报告如下。

1 材料与方法

1.1 实验动物

24只SPF级8周龄健康怀孕雌性SD大鼠,购自北京维通利华实验动物技术有限公司[动物合格证号:SCXK(京)2021-0011]。饲养于SPF房内,1周后进行实验,所有实验操作符合3R原则。

1.2 主要试剂

苏木精-伊红(hematoxylin eosin,HE)染色试剂盒(货号:BJ-14644),购自上海邦景实业有限公司;5-溴脱氧尿嘧啶核苷(5-bromodeoxyuridine,BrdU)(货号A1397),购自北京康瑞纳生物科技有限公司;微管相关蛋白(doublecortin,DCX)(货号:ET1701-98),购自杭州华安生物技术有限公司;小胶质细胞标记物(ionized calcium binding adapter molecule 1,Iba-1)(货号:ab178846),购自英国Abcam公司;Triton X-100(货号:B1276)、4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)(货号:Y1083S),购自优利科(上海)生命科学有限公司;小鼠皮质酮检测试剂盒(货号:SZ-HAS-265),购自深圳海思安生物技术有限公司;白细胞介素-1β(interleukin-1β,IL-1β)(货号:ml301814)、白细胞介素-6(interleukin-6,IL-6)(货号:ml102828)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)(货号:ml002859),购自上海酶联生物科技有限公司。

1.3 方法

1.3.1 分组与造模

将24只孕18 d大鼠随机分为对照组和模型组,每组12只。采用水平台睡眠剥夺法建立睡眠剥夺模型[14]。睡眠剥夺箱内放置1个距箱底5 cm高的平台,孕鼠可于平台上正常进食与活动。箱内注入恒温25 ℃的清水,至距平台1 cm处。孕鼠在平台上进入异相睡眠期后,身体肌肉松弛,难以站稳或落入水中,迫使孕鼠保持清醒。模型组接受为期72 h的睡眠剥夺,完成后将放回原笼待产,对照组不进行睡眠剥夺,正常饲养。建模完成后,对照组与模型组各随机取6只孕鼠乙醚麻醉,腹主动脉采血,完整取出脑组织,剥离胎鼠、胎盘,其余6只自然分娩,正常饲养。

1.3.2 幼鼠行为学检测

所有实验均于幼鼠出生后34 d、64 d进行,在一个安静、光线昏暗的房间内完成。旷场实验使用60 cm×60 cm×30 cm的黑色不透明聚丙烯板搭建活动区域,每次投入1只鼠,通过SMART视频跟踪系统记录幼鼠的活动轨迹。将活动区域划分为16个等大方格(15 cm×15 cm),分析5 min内幼鼠的活动总距离、在中央4个区域内的停留时间与距离。高架十字迷宫使用黑色聚丙烯板搭建距地面55 cm高的高架十字迷宫,四臂长50 cm,宽10 cm,开放臂边缘及末端无遮挡,闭合臂边缘及末端以30 cm高的挡板遮挡。每次投入1只鼠,测试开始时,幼鼠面朝开放臂放置于仪器中心,拍摄5 min内幼鼠自由活动的过程。以幼鼠四肢完全进入臂内计为进入1次,实验过程中幼鼠掉出迷宫则不计入,分析幼鼠进入各个臂的次数和时长。强迫游泳强迫游泳设备为一高40 cm,直径30 cm的透明圆柱形容器,容器内注入高20 cm、温度(24±1) ℃的水。每次投入1只鼠,幼鼠全程后肢无法接触容器底部,上肢和头部无法探出容器上缘。观察拍摄10 min内幼鼠活动情况,记录除保持头部高于水面的必要动作外,放弃挣扎漂浮不动的时间。

1.3.3 苏木精-伊红(hematoxylin eosin,HE)染色观察胎盘组织形态

取部分胎盘组织置入4%多聚甲醛中固定后常规石蜡包埋制成厚度为5 μm的切片,按照HE染色试剂盒说明书的操作步骤染色,在光镜下观察拍照。

1.3.4 免疫荧光染色观察海马小胶质细胞形态和神经元增殖

每组取6只21 d龄胎鼠,腹腔注射50 mg/kg BrdU,1 d/次,持续3 d。末次给药2 h后,使用50 mg/kg戊巴比妥钠麻醉胎鼠,经心内灌流磷酸盐缓冲液和4%多聚甲醛,完整取出脑组织,置入4%多聚甲醛中48 h后置入30%蔗糖溶液中24 h,制成厚度为30 μm的冷冻切片,置于含0.03%叠氮化钠的磷酸盐缓冲液中4 ℃保存。用0.5% Triton X-100渗透切片20 min,置于1 mol/L盐酸溶液中,37 ℃处理30 min后用0.1 mol/L硼酸盐缓冲液洗涤。切片置于含10%驴血清的磷酸盐缓冲液中封闭2 h,加入稀释比例均为1∶400的BrdU、DCX抗体,4 ℃孵育过夜。Iba-1的免疫荧光切片不接受盐酸孵育和硼酸盐缓冲液洗涤,稀释比例均为1∶400。第2天加入荧光染料偶联的对应二抗孵育1 h,稀释比例1∶400。加入稀释比例为1∶10 000的DAPI染核5 min,封片,于荧光显微镜下避光观察拍照。BrdU、DCX标记评估海马神经发生情况,Iba-1标记小胶质细胞形态,通过Image J软件分析图像,统计小胶质细胞数量、细胞表面积和突起数量。

1.3.5 高效液相色谱法检测色氨酸、犬尿氨酸、KYNA水平

取部分胎盘组织与部分母鼠、胎鼠脑组织,称重后置于超纯水中超声破碎待用。100 μL样品加入25 µL 25%高氯酸组织酸化,12 000×g离心10 min,取20 μL上清液进行高效液相色谱检测。色氨酸、犬尿氨酸和KYNA在Reprosil-Pur C18色谱柱上等度洗脱,流动相含50 mmol/L乙酸钠和5%乙腈,冰醋酸调节pH至6.2,流速为0.5 mL/min,柱后使用流速为0.1 mL/min的500 mmol/L醋酸锌进行检测。用Waters 2475荧光检测仪测定洗脱液中的色氨酸(激发波长285 nm,发射波长365 nm)、犬尿氨酸(激发波长365 nm,发射波长480 nm)和KYNA(激发波长344 nm,发射波长398 nm),保留时间分别为11 min、6 min和11 min。胎盘组织检测色氨酸、犬尿氨酸、KYNA,母鼠、胎鼠脑组织检测KYNA。

1.3.6 皮质酮测定

取母鼠血浆,按照皮质酮检测试剂盒说明书要求进行实验,测定皮质酮水平。

1.3.7 细胞因子定量

取部分胎盘组织制成匀浆,按照ELISA检测试剂盒说明书中的步骤进行实验,检测促炎细胞因子IL-1β、IL-6、TNF-α水平。

1.4 统计学方法

数据分析使用SPSS 24.0统计软件完成,经正态性和方差齐性检验,计量资料均符合正态分布,方差齐,以均数±标准差(x±s)表示,组间比较采用独立样本t检验。检验水准α=0.05。

2 结 果

2.1 各组幼鼠行为学检测结果

旷场实验结果显示,与对照组相比,模型组64 d活动总距离[(3 3943.38±4 799.51) vs. (2 5631.09±2 172.24),t=9.928,P=0.000]、34 d中央区域停留时间[(14.08±2.67) vs.(17.59±2.34),t=6.302,P=0.000]、64 d中央区域活动距离[(2 747.52±381.30)vs.(2 271.85±242.93),t=6.659,P=0.000]存在差异。高架十字迷宫实验结果显示,34 d、64 d对照组与模型组幼鼠进入开放臂、闭合臂的次数、64 d 2组幼鼠进入开放臂、闭合臂的时间差异均无统计学意义(P>0.05),34 d模型组幼鼠进入开放臂的时间较对照组增多[(77.26±10.71) vs. (94.17±8.68),t=7.805,P=0.000],进入闭合臂的时间较对照组减少[(163.66±10.45) vs. (132.74±9.53),t=13.950,P=0.000]。强迫游泳实验结果显示,34 d对照组与模型组幼鼠不动时间无统计学差异(P>0.05),64 d模型组幼鼠不动时间较对照组增加[(65.04±10.85) vs. (114.59±12.32),t=19.365,P=0.000]。见图1

2.2 胎盘、海马组织学检测结果

HE染色结果显示,对照组胎盘结构清晰,细胞形态正常,模型组胎盘部分滋养细胞皱缩,呈空网状,血窦减少。经免疫荧光染色,BrdU呈绿色,DCX、Iba-1呈红色。与对照组相比,模型组胎鼠海马神经元增殖减少[(59.39±2.67) vs.(40.26±6.59),t=6.590,P=0.000],小胶质细胞增多[(2 091.64±148.08)vs.(2 450.03±301.42),t=2.614,P=0.024],突起数量减少[(9.47±0.52) vs. (5.44±0.53),t=13.295,P=0.000]。见图2

2.3 色氨酸、犬尿氨酸与KYNA生化分析结果

与对照组相比,模型组胎盘色氨酸[(108.69±7.07) vs. (138.49±4.93),t=8.469,P=0.000]、犬尿氨酸[(4.12±0.26)vs. (5.16±0.36),t=5.737,P=0.000]与KYNA水平[(196.20±31.97) vs. (317.86±30.40),t=6.755,P=0.000]明显升高,母鼠脑组织KYNA水平差异无统计学意义(P>0.05),胎鼠脑组织KYNA水平明显升高[(321.28±22.94) vs. (654.86±144.39),t=5.589,P=0.000]。见图3

2.4 母鼠血浆皮质酮与胎盘细胞因子定量检测结果

与对照组相比,模型组母鼠血浆皮质酮水平升高[(126.34±41.20) vs. (877.18±187.67),t=9.572,P=0.000],胎盘IL-1β[(3.22±1.06) vs. (8.13±1.89),t=5.550,P=0.000]、IL-6[(4.28±1.85) vs. (12.47±5.29),t=3.580,P=0.004]、TNF-α[(10.72±2.56) vs. (29.38±5.53),t=7.501,P=0.000]水平升高。见图4

3 讨 论

孕期睡眠质量下降的情况较为普遍,在妊娠晚期,产妇子宫增大,压迫脏器,多种激素与心理状态产生变化,多种因素皆可导致睡眠障碍加重[15-16]。孕期睡眠剥夺可致子代生化指标与行为发生变化,Yao ZY等[17]的研究显示,孕晚期母鼠睡眠剥夺可令子代鼠肠道菌群失调,导致神经炎症和心理障碍。Lahimgarzadeh R等[18]研究提及,母鼠睡眠剥夺的子代鼠海马神经发生能力减弱,经Morris水迷宫测试,子代鼠空间记忆学习能力较差。本次研究结果显示,睡眠剥夺模型孕鼠幼鼠3种行为学实验结果与对照组均存在统计学差异,提示母鼠孕晚期睡眠剥夺可能对幼鼠行为方式产生影响。组织学检测结果显示,睡眠剥夺模型胎盘部分滋养细胞与胎鼠海马小胶质细胞形态发生变化,海马神经元增殖减少。海马结构完整性受到神经发生水平影响,神经发生减少令神经回路受损,进而导致海马功能发生变化,可能是幼鼠行为方式出现差异的原因之一[19]。小胶质细胞的激活和炎性细胞因子的分泌在神经干细胞增殖、分化等过程中发挥调节作用[20]。胚胎时期过度激活的小胶质细胞可持续影响神经元细胞生存,甚至影响成年后的行为表现[21]。Tang CF等[22]研究表明,啮齿动物海马新生神经元减少可激活小胶质细胞。另一方面,胎儿大脑发育与母亲和胎儿之间的内分泌和免疫动态平衡密切相关[23]。细胞因子定量结果显示,睡眠剥夺模型胎盘IL-1β、IL-6、TNF-α水平较对照组明显升高,说明孕期睡眠剥夺可诱导母体免疫系统激活,而孕期炎症反应失调抑制神经发生可导致后代行为异常与神经病理变化[24]

犬尿氨酸途径参与了调节母体与胎盘的血管张力、免疫耐受、神经保护等多种孕期生理过程,犬尿氨酸途径代谢物可通过胎盘运输影响胎盘功能和妊娠结局[25-26]。近期部分研究认为,犬尿氨酸途径具有调节睡眠的作用,KYNA分解代谢增加与睡眠缺失相关[27-28]。长期保持清醒状态后,机体皮质酮与色氨酸水平升高,皮质酮激活色氨酸-2,3-双加氧酶催化大部分色氨酸分解代谢成犬尿氨酸[29]。犬尿氨酸进一步代谢产物KYNA是一种神经调节剂,Rentschler KM等[12]的研究显示,亲代大鼠食用犬尿氨酸饲料,子代鼠睡眠-觉醒节律紊乱,犬尿氨酸代谢途径出现性别特异性变化。Bai MY等[30]的研究表明,犬尿氨酸-3-单加氧酶基因敲除的小鼠犬尿氨酸羟化反应途径被抑制,脑组织KYNA水平升高,神经元兴奋性发生变化。在本次研究中,睡眠剥夺模型胎盘色氨酸、犬尿氨酸、KYNA水平升高,胎鼠脑组织KYNA水平升高,母鼠血浆皮质酮水平升高,推测孕晚期睡眠剥夺可能导致孕鼠犬尿氨酸途径相关水平变化,进而导致胎盘促炎分子水平与幼鼠认知功能改变。

综上所述,孕晚期睡眠剥夺可能通过犬尿氨酸途径引发孕鼠胎盘炎症反应,抑制胎鼠海马神经发生,影响幼鼠认知功能,但本次研究仅涉及了犬尿氨酸途径的一部分,犬尿氨酸代谢过程还可能通过其他机制对孕晚期睡眠剥夺模型孕鼠与幼鼠产生影响,还需更加深入地研究验证。

参考文献

[1]

Wang ZChen WHLi SXet al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation[J]. Mol Psychiatry202126(11):6277-6292.

[2]

Wei RDuan XYGuo LX. Effects of sleep deprivation on coronary heart disease[J]. Korean J Physiol Pharmacol202226(5):297-305.

[3]

Ishkova AWilson DLHoward MEet al. The effect of body position on maternal cardiovascular function during sleep and wakefulness in late pregnancy[J]. J Matern Fetal Neonatal Med202235(13):2545-2554.

[4]

Sonmezer EÖzköslü MAYosmaoğlu HB. The effects of clinical Pilates exercises on functional disability,pain,quality of life and lumbopelvic stabilization in pregnant women with low back pain:a randomized controlled study[J]. J Back Musculoskelet Rehabil202134(1):69-76.

[5]

DiPietro JAWatson HRaghunathan RSet al. Fetal neuromaturation in late gestation is affected by maternal sleep disordered breathing and sleep disruption in pregnant women with obesity[J]. Int J Gynaecol Obstet2022157(1):181-187.

[6]

Nakahara KMichikawa TMorokuma Set al. Association of maternal sleep before and during pregnancy with sleep and developmental problems in 1-year-old infants[J]. Sci Rep202111(1):11834.

[7]

Khodaverdiloo AFarhadi MJameie Met al. Neurogenesis in the rat neonate’s hippocampus with maternal short-term REM sleep deprivation restores by royal jelly treatment[J]. Brain Behav202111(12):e2423.

[8]

Xie XTDing DQBai DYet al. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms[J]. Synth Syst Biotechnol20227(1):544-553.

[9]

Wang WQWang XYLiu Let al. Dietary tryptophan and the risk of obesity and type 2 diabetes:total effect and mediation effect of sleep duration[J]. Obesity202230(2):515-523.

[10]

Correia ASVale N. Tryptophan metabolism in depression:a narrative review with a focus on serotonin and kynurenine pathways[J]. Int J Mol Sci202223(15):8493.

[11]

Martos DTuka BTanaka Met al. Memory enhancement with kynurenic acid and its mechanisms in neurotransmission[J]. Biomedicines202210(4):849.

[12]

Rentschler KMBaratta AMDitty ALet al. Prenatal kynurenine elevation elicits sex-dependent changes in sleep and arousal during adulthood:implications for psychotic disorders[J]. Schizophr Bull202147(5):1320-1330.

[13]

Mithaiwala MNSantana-Coelho DPorter GAet al. Neuroinflammation and the kynurenine pathway in CNS disease:molecular mechanisms and therapeutic implications[J]. Cells202110(6):1548.

[14]

Dai DSZheng BQYu ZGet al. Right stellate ganglion block improves learning and memory dysfunction and hippocampal injury in rats with sleep deprivation[J]. BMC Anesthesiol202121(1):272.

[15]

Salari NDarvishi NKhaledi-Paveh Bet al. A systematic review and meta-analysis of prevalence of insomnia in the third trimester of pregnancy[J]. BMC Pregnancy Childbirth202121(1):284.

[16]

Tang YFDai FRazali NSet al. Sleep quality and BMI in pregnancy- a prospective cohort study[J]. BMC Pregnancy Childbirth202222(1):72.

[17]

Yao ZYLi XHZuo Let al. Maternal sleep deprivation induces gut microbial dysbiosis and neuroinflammation in offspring rats[J]. Zool Res202243(3):380-390.

[18]

Lahimgarzadeh RVaseghi SNasehi Met al. Effect of multi-epitope derived from HIV-1 on REM sleep deprivation-induced spatial memory impairment with respect to the level of immune factors in mice[J]. Iran J Basic Med Sci202225(2):164-172.

[19]

Ehsanifar MJafari AJMontazeri Zet al. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution[J]. J Environ Health Sci Eng202119(1):261-272.

[20]

Popova GSoliman SSKim CNet al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids[J]. Cell Stem Cell202128(12):2153-2166. e6.

[21]

Quarta ABerneman ZPonsaerts P. Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair[J]. J Leukoc Biol2021110(1):89-106.

[22]

Tang CFWang CYWang JHet al. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage[J]. Nutrients202214(9):1882.

[23]

Zhao SJMuyayalo KPLuo Jet al. Next generation of immune checkpoint molecules in maternal-fetal immunity[J]. Immunol Rev2022308(1):40-54.

[24]

Kwon HKChoi GBHuh JR. Maternal inflammation and its ramifications on fetal neurodevelopment[J]. Trends Immunol202243(3):230-244.

[25]

Karahoda RRobles MMarushka Jet al. Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth[J]. Hum Mol Genet202130(22):2053-2067.

[26]

Broekhuizen MJan Danser AHJReiss IKMet al. The function of the kynurenine pathway in the placenta:a novel pharmacotherapeutic target?[J]. Int J Environ Res Public Health202118(21):11545.

[27]

Milosavljevic SSmith AKWright CJet al. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult[J]. Transl Psychiatry202313(1):106.

[28]

Savonije KWeaver DF. The role of tryptophan metabolism in Alzheimer’s disease[J]. Brain Sci202313(2):292.

[29]

Murakami YImamura YKasahara Yet al. Maternal inflammation with elevated kynurenine metabolites is related to the risk of abnormal brain development and behavioral changes in autism spectrum disorder[J]. Cells202312(7):1087.

[30]

Bai MYLovejoy DBGuillemin GJet al. Galantamine-memantine combination and kynurenine pathway enzyme inhibitors in the treatment of neuropsychiatric disorders[J]. Complex Psychiatry20217(1/2):19-33.

AI Summary AI Mindmap
PDF (3722KB)

318

访问

0

被引

详细

导航
相关文章

AI思维导图

/